International Journal of Biometeorology

, Volume 61, Issue 7, pp 1347–1358 | Cite as

Phenological patterns of flowering across biogeographical regions of Europe

  • Barbara Templ
  • Matthias Templ
  • Peter Filzmoser
  • Annamária Lehoczky
  • Eugenija Bakšienè
  • Stefan Fleck
  • Hilppa Gregow
  • Sabina Hodzic
  • Gunta Kalvane
  • Eero Kubin
  • Vello Palm
  • Danuta Romanovskaja
  • Višnja Vucˇetic´
  • Ana žust
  • Bálint Czúcz
  • NS-Pheno Team
Original Paper

Abstract

Long-term changes of plant phenological phases determined by complex interactions of environmental factors are in the focus of recent climate impact research. There is a lack of studies on the comparison of biogeographical regions in Europe in terms of plant responses to climate. We examined the flowering phenology of plant species to identify the spatio-temporal patterns in their responses to environmental variables over the period 1970–2010. Data were collected from 12 countries along a 3000-km-long, North–South transect from northern to eastern Central Europe.

Biogeographical regions of Europe were covered from Finland to Macedonia. Robust statistical methods were used to determine the most influential factors driving the changes of the beginning of flowering dates. Significant species-specific advancements in plant flowering onsets within the Continental (3 to 8.3 days), Alpine (2 to 3.8 days) and by highest magnitude in the Boreal biogeographical regions (2.2 to 9.6 days per decades) were found, while less pronounced responses were detected in the Pannonian and Mediterranean regions. While most of the other studies only use mean temperature in the models, we show that also the distribution of minimum and maximum temperatures are reasonable to consider as explanatory variable. Not just local (e.g. temperature) but large scale (e.g. North Atlantic Oscillation) climate factors, as well as altitude and latitude play significant role in the timing of flowering across biogeographical regions of Europe. Our analysis gave evidences that species show a delay in the timing of flowering with an increase in latitude (between the geographical coordinates of 40.9 and 67.9), and an advance with changing climate. The woody species (black locust and small-leaved lime) showed stronger advancements in their timing of flowering than the herbaceous species (dandelion, lily of the valley). In later decades (1991–2010), more pronounced phenological change was detected than during the earlier years (1970–1990), which indicates the increased influence of human induced higher spring temperatures in the late twentieth century.

Keywords

Beginning of flowering Biogeographical regions Climate change Europe Robust regression Shifting trend 

References

  1. Aguilera F, Fornaciari M, Ruiz-Valenzuela L, Galàn C, Msallem M, Dhiab A B, Dìaz-de la Guardia C, del Mar Trigo M, Bonofiglio T, Orlandi F (2015) Phenological models to predict the main flowering phases of olive (Olea europaea L.) along a latitudinal and longitudinal gradient across the Mediterranean region. Int J Biometeorol 95:629–641CrossRefGoogle Scholar
  2. Ahas R, Aasa A (2006) The effects of climate change on the phenology of selected Estonian plant, bird and fish populations. Int J Biometeorol 51:17–26CrossRefGoogle Scholar
  3. Askeyev O V, Sparks T H, Askeyev I V, Tishin D V, Tryjanowski P (2010) East versus West: contrasts in phenological patterns? Glob Ecol Biogeogr 19:783–793CrossRefGoogle Scholar
  4. Auer I, Böhm R, Jurkovic A, Lipa W, Orlik A, Potzmann R, Schöner W, Ungersböck M, Matulla C, Briffa K, Jones P, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisselin J M, Begert M, Müller-Westermeier G, Kveton V, Bochnicek O, Stastny P, Lapin M, Szalai S, Szentimrey T, Cegnar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovic Z, Nieplova E (2007) Histalp—historical instrumental climatological surface time series of the Greater Alpine Region. Int J Climatol 27:17–46CrossRefGoogle Scholar
  5. Chambers L E, Altwegg R, Barbraud C, Barnard P, Beaumont L J, Crawford R J M, Durant J M, Hughes L, Keatley M R, Low M, Morellato P C, Poloczanska E S, Ruoppolo V, Vanstreels R E T, Woehler E J, Wolfaardt A C (2013) Phenological changes in the southern hemisphere. PLoS ONE e75514:8Google Scholar
  6. Chmielewski F M, Rotzer T (2001) Response of tree phenology to climate change across Europe. Agric For Meteorol 108:101–112CrossRefGoogle Scholar
  7. Cleland E, Chuine I, Menzel A, Mooney H A, Schwartz M D (2007) Shifting plant phenology in response to global change. Trends Ecol Evol 22:357–365CrossRefGoogle Scholar
  8. Cleveland W (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74:829–836CrossRefGoogle Scholar
  9. Crepinsek Z, Zrnec C, Susnik A, Zust A (2008) Slovenian phenological observations. In: Nekovar J, Koch E, Kubin E, Nejedlik P, Sparks T, Wielgolaski F E (eds) COST Action 725—the history and current status of plant phenology in Europe. COST Office, BrusselsGoogle Scholar
  10. Demarèe G R, Rutishauser T (2009) Origins of the word “Phenology”. EOS Trans Am Geophys Union 90:291–291CrossRefGoogle Scholar
  11. Estrella N, Sparks T, Menzel A (2009) Effects of temperature, phase type and timing, location, and human density on plant phenological responses in Europe. Clim Res 39:235–248CrossRefGoogle Scholar
  12. ETCBD (2006) The indicative map of European biogeographical regions: methodology and development. Technical report European Topic Centre on Biological Diversity. National Museum of Natural History, FranceGoogle Scholar
  13. Franks S J (2015) The unique and multifaceted importance of the timing of flowering. Am J Bot 102:1401–1402CrossRefGoogle Scholar
  14. Ge Q, Wang H, Rutishauser T, Dai J (2015) Phenological response to climate change in China: a meta-analysis. Glob Chang Biol 21:265–274CrossRefGoogle Scholar
  15. Gobiet A, Kotlarski K, Beniston M, Heinrich G, Rajczak J, Stoffel M (2014) 21st century climate change in the European Alps—a review. Sci Total Environ 493:1138–1151CrossRefGoogle Scholar
  16. Grisule G, Briede E (2008) The history and current status of phenological recording in Latvia. In: Nekovar J, Koch E, Kubin E, Nejedlik P, Sparks T, Wielgolaski F E (eds) COST Action 725 – the history and current status of plant phenology in Europe. COST Office, BrusselsGoogle Scholar
  17. Haylock M R, Hofstra N, Klein Tank A M G, Klok E J, Jones P D, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res - Atmos 113, 10.1029/2008JD010201
  18. Hodzic S, Voljevica A (2008) Phenology in Bosnia and Hercegovina. In: Nekovar J, Koch E, Kubin E, Nejedlik P, Sparks T, Wielgolaski F E (eds) COST Action 725—the history and current status of plant phenology in Europe. COST Office, BrusselsGoogle Scholar
  19. Hurrel J W (1995) Decadal trends in the North Atlantic Oscillation regional temperatures and precipitation. Science 269:676–679CrossRefGoogle Scholar
  20. IPCC (2007) Technical summary. Cambridge University Press , CambridgeGoogle Scholar
  21. Jatczak K, Walawender J (2009) Average rate of phenological changes in Poland according to climatic changes. Adv Sci Res 3 :127–131CrossRefGoogle Scholar
  22. Kalvane G, Romanovskaja D, Briede A, Baksiene E (2009) Influence of climate change on phenological phases in Latvia and Lithuania. Clim Res 39:209–210CrossRefGoogle Scholar
  23. Karyieva J, van Leeuven W, Woodhouse C (2012) Impacts of climate gradients on the vegetation phenology of major land use types in Central Asia (1981–2008). Front Earth Sci 6:206–225Google Scholar
  24. Koch E, Dittmann E, Lippa W, Menzel A, Nekovar J, Sparks T, van Vliet AJH (2009) COST725—Establishing a European phenological data platform for climatological applications: major results. Adv Sci Res 3:119–122Google Scholar
  25. Körner C, Basler D (2010) Phenology under global warming. Science 327:1461–1462Google Scholar
  26. Kubin E, Kotilainen E, Poikolainen J, Hokkanen T, Nevalainen S, Pouttu A, Karhu J, Pasanen J (2007) Monitoring instructions of the finnish national phenological network. Technical report Finnish Forest Research Institute, Muhos Research Unit , MetlaGoogle Scholar
  27. Lappalainen H, Linkosalo T, Venalainen A (2008) Long-term trends in spring phenology in a boreal forest in central Finland. Boreal Environ Res 13:303–318Google Scholar
  28. Mann H B (1945) Nonparametric tests against trend. Econometrica 13:245–259CrossRefGoogle Scholar
  29. Maronna R, Martin R, Yohai V (2006) Robust statistics: theory and methods. Wiley, New York. ISBN:978-0-470-01092-1CrossRefGoogle Scholar
  30. Martìnkovà J, Smilauer P, Mihulka S (2002) Phenological pattern of grassland species: relation to the ecological and morphological traits. Flora 197:290–302CrossRefGoogle Scholar
  31. Meier U (2001) BBCH-Monograph: growth stages of mono- and dicotyledonous plants. Technical Report, 2 Edn. Federal Biological Research Centre for Agriculture and ForestryGoogle Scholar
  32. Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659CrossRefGoogle Scholar
  33. Menzel A, Seifert H, Estrella N (2005) SSW to NNE—North Atlantic Oscillation affects the progress of seasons across Europe. Glob Chang Biol 11:909–918CrossRefGoogle Scholar
  34. Menzel A, Seifert H, Estrella N (2011) Effects of recent warm and cold spells on European plant phenology. Int J Biometeorol 55:921–932CrossRefGoogle Scholar
  35. Menzel A, Sparks T H, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kuebler K, Bissollii P, Braslavska O, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl A, Defila C, Donelly A, Filella Y, Jatczak K, Mage F, Mestre A, Nordli A, Penuelas J, Pirinen P, Remisova V, Scheifinger H, Striz M, Susnik A, Van Vliet AJH, Wielgolaski FE, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976Google Scholar
  36. Mikkonen S, Laine M, Mäkelä H, Gregow H, Tuomenvirta H, Lahtinen M, Laaksonen A (2015) Trends in the average temperature in Finland, 1847–2013. Stoch Env Res Risk A 29:1521– 1529Google Scholar
  37. Nekovàr J, Koch E, Kubin E, Nejedlik P, Sparks T, Wielgolaski F E (2008) COST ACtion 725—The history and current status of plant phenology in Europe Technical report. COST Office , BrusselsGoogle Scholar
  38. Niedz̀wiedz̀ T, Jatczak K (2008) History of phenology in Poland. In: Nekovar J, Koch E, Kubin E, Nejedlik P, Sparks T, Wielgolaski F E (eds) COST Action 725—the history and current status of plant phenology in Europe. COST Office, BrusselsGoogle Scholar
  39. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annual review of ecology. Evol Syst 37:637– 669CrossRefGoogle Scholar
  40. Penuelas J, Filella I, Zhang X, Llorens L, Ogaya R, Lloret F, Comas P, Estiarte M, Terradas J (2004) Complex spatiotemporal phenological shifts as a response to rainfall changes. New Phytol 161 :837–846Google Scholar
  41. Pilar C, Gabriel M (1998) Phenological pattern of fifteen Mediterranean phanaerophytes from Quercus ilex communities of NE-Spain. Plant Ecol 139:103–112CrossRefGoogle Scholar
  42. Popovic T, Drljevic M (2008) History and current status of phenology in Montenegro. In: Nekovar J, Koch E, Kubin E, Nejedlik P, Sparks T, Wielgolaski F E (eds) COST Action 725—the history and current status of plant phenology in Europe. COST Office, BrusselsGoogle Scholar
  43. Pudas E, Leppala M, Tolvanen A, Poikolainen J, Venalainen A, Kubin E (2008) Trends in phenology of Betula pubescens across the boreal zone in Finland. Int J Biometeorol 52:251–259CrossRefGoogle Scholar
  44. R Development Core Team (2016) R: a language and environment for statistical computing r foundation for statistical computing. Vienna, Austria. http://www.R-project.org Google Scholar
  45. Remisovà T, Nejedlik P (2008) History and present observations in Slovak plant phenology. In: Nekovar J, Koch E, Kubin E, Nejedlik P, Sparks T, Wielgolaski F E (eds) COST Action 725—the history and current status of plant phenology in Europe. COST Office, BrusselsGoogle Scholar
  46. Rodriguez-Galiano V, Dash J, Atkinson P (2015) Characterising the land surface phenology of Europe using decadal MERIS data. Remote Sens 7:9390–9409CrossRefGoogle Scholar
  47. Roekaerts M (2002) The biogeographical regions map of Europe: basic principles of its creation and overview of its development Technical report. European Topic Centre Nature Protection and Biodiversity, European Environment AgencyGoogle Scholar
  48. Romanovskaja D, Baksiene E Nekovar J, Koch E, Kubin E, Nejedlik P, Sparks T, Wielgolaski F E (eds) (2008) Phenological investigations in Lithuania. COST Office, BrusselsGoogle Scholar
  49. Root T L, Price J T, Hall K R, Schneider S H, Rosenzweig C, Pounds J A (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60CrossRefGoogle Scholar
  50. Rousseeuw P, Croux C, Todorov V, Ruckstuhl A, Salibian-Barrera M, Verbeke T, Koller M, Maechler M (2015) Robustbase: basic Robust Statistics. R Foundation for Statistical Computing, package version 0.92-3Google Scholar
  51. Rutishauser T, Schleip C, Sparks T H, Nordli O, Menzel A, Wanner H, Jeanneret F, Luterbacher J (2009) Temperature sensitivity of Swiss and British plant phenology from 1753 to 1958. Clim Res 39 :179–190CrossRefGoogle Scholar
  52. Scheifinger H, Menzel A, Koch E, Peter C, Ahas R (2002) Atmospheric mechanisms governing the spatial and temporal variability of phenological phases in Central Europe. Int J Climatol 22:1739–1755CrossRefGoogle Scholar
  53. Schleip C, Sparks T H, Estrella N, Menzel A (2009) Spatial variation in onset dates and trends in phenology across Europe. Clim Res 39:249–260CrossRefGoogle Scholar
  54. Schwartz M D, Ahas R, Aasa A (2006) Onset of spring starting earlier across the Northern Hemisphere. Glob Chang Biol 12:343–351CrossRefGoogle Scholar
  55. Stocker T, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  56. Szabò B, Vincze E, Czùcz B (2016) Flowering phenological changes in relation to climate change in Hungary. Int J Biometeorol 60:1347–1356CrossRefGoogle Scholar
  57. Szalai S, Bella S, Nèmeth A, Dunay S (2008) History of Hungarian phenological observations. In: Nekovar J, Koch E, Kubin E, Nejedlik P, Sparks T, Wielgolaski F (eds) COST Action 725—the history and current status of plant phenology in Europe. COST Office, BrusselsGoogle Scholar
  58. Templ B, Fleck s, Templ M (2016) Change of plant phenophases explained by survival modelling. Int J Biometeorol, doi:10.1007/s00484-016-1267-z 10.1007/s00484-016-1267-z
  59. Todorov V, Filzmoser P (2009) Multivariate robust statistics: methods and computation. Südwestdeutscher Verlag für Hochschulschriften, SaarbrückenGoogle Scholar
  60. Vucetic V, Vucetic M, Loncar Z (2008) History and present observations in Croatian plant phenology. In: Nekovàr J, Koch E, Kubin E, Nejedlik P, Sparks T, Wielgolaski F E (eds) COST Action 725—the history and current status of plant phenology in Europe. COST Office, BrusselsGoogle Scholar
  61. Walther G R, Post E, Convey P, Menzel A, Parmesan C, Beebee T J C, Fromentin J M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395CrossRefGoogle Scholar
  62. White M A, Hoffman F, Hargrove W W, Nemani R R (2005) A global framework for monitoring phenological responses to climate change. Geophys Res Lett 32:L04705Google Scholar
  63. Wielgolaski F (2001) Phenological modifications in plants by various edaphic factors. Int J Biometeorol 45:196–202CrossRefGoogle Scholar
  64. Wolkovich E, Cook B, Allen J M, Crimmins T M, Betancourt J L, Travers S E, Pau S, Regetz J, Davies T J, Kraft N J B, Ault T R, Bolmgren K, Mazer S J, McCabe G J, McGill B J, Parmesan C, Salamin N, Schwartz M D, Cleland E E (2012) Warming experiments underpredict plant phenological responses to climate change. Nature 485:494–497Google Scholar

Copyright information

© ISB 2017

Authors and Affiliations

  • Barbara Templ
    • 1
  • Matthias Templ
    • 2
  • Peter Filzmoser
    • 3
  • Annamária Lehoczky
    • 4
  • Eugenija Bakšienè
    • 5
  • Stefan Fleck
    • 6
  • Hilppa Gregow
    • 7
  • Sabina Hodzic
    • 8
  • Gunta Kalvane
    • 9
  • Eero Kubin
    • 10
  • Vello Palm
    • 11
  • Danuta Romanovskaja
    • 5
  • Višnja Vucˇetic´
    • 12
  • Ana žust
    • 13
  • Bálint Czúcz
    • 14
    • 15
  • NS-Pheno Team
  1. 1.Department of Plant Systematics, Ecology and Theoretical BiologyEötvös Loránd UniversityBudapestHungary
  2. 2.Institute of Data Analysis and Process DesignZurich University of Applied SciencesWinterthurSwitzerland
  3. 3.Institute of Statistics and Mathematical Methods in EconomicsVienna University of TechnologyViennaAustria
  4. 4.Centre for Climate ChangeUniversity Rovira i VirgiliTortosaSpain
  5. 5.Voke Branch of the Lithuanian ResearchCentre for Agriculture and ForestryVilniusLithuania
  6. 6.Statistics AustriaViennaAustria
  7. 7.Climate Service CentreFinnish Meteorological InstituteHelsinkiFinnland
  8. 8.Sector for Applied MeteorologyFederal Hydrometeorological Institute of Federation of Bosnia and HerzegovinaSarajevoBosnia and Herzegovina
  9. 9.Faculty of Geography and Earth SciencesUniversity of LatviaRigaLatvia
  10. 10.Natural Resources and BioproductionNatural Resources Institute FinlandHelsinkiFinland
  11. 11.Institute of Ecology and Earth ScienceUniversity of TartuTartuEstonia
  12. 12.Meteorological Research and Development DivisionMeteorological and Hydrological ServiceZagrebCroatia
  13. 13.Agrometeorological DepartmentEnvironmental Agency of the Republic of SloveniaLjubljanaSlovenia
  14. 14.European Topic Centre on Biological DiversityFrench National Museum of Natural HistoryParisFrance
  15. 15.Institute of Ecology and BotanyMTA Centre for Ecological ResearchVácrátótHungary

Personalised recommendations