Effects of cold and hot temperature on dehydration: a mechanism of cardiovascular burden

Abstract

The association between temperature (cold or heat) and cardiovascular mortality has been well documented. However, few studies have investigated the underlying mechanism of the cold or heat effect. The main goal of this study was to examine the effect of temperature on dehydration markers and to explain the pathophysiological disturbances caused by changes of temperature. We investigated the relationship between outdoor temperature and dehydration markers (blood urea nitrogen (BUN)/creatinine ratio, urine specific gravity, plasma tonicity and haematocrit) in 43,549 adults from Seoul, South Korea, during 1995–2008. We used piece-wise linear regression to find the flexion point of apparent temperature and estimate the effects below or above the apparent temperature. Levels of dehydration markers decreased linearly with an increase in the apparent temperature until a point between 22 and 27 °C, which was regarded as the flexion point of apparent temperature, and then increased with apparent temperature. Because the associations between temperature and cardiovascular mortality are known to be U-shaped, our findings suggest that temperature-related changes in hydration status underlie the increased cardiovascular mortality and morbidity during high- or low-temperature conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Akaike H (1974) A new look at the statistical model identification. Autom Control IEEE Trans 19(6):716–723. doi:10.1109/tac.1974.1100705

    Article  Google Scholar 

  2. Alpérovitch A, Lacombe J-M, Hanon O, Dartigues J-F, Ritchie K, Ducimetière P, Tzourio C (2009) Relationship between blood pressure and outdoor temperature in a large sample of elderly individuals: the Three-City study. Arch Intern Med 169(1):75

    Article  Google Scholar 

  3. Analitis A, Katsouyanni K, Biggeri A, Baccini M, Forsberg B, Bisanti L, Kirchmayer U, Ballester F, Cadum E, Goodman PG, Hojs A, Sunyer J, Tiittanen P, Michelozzi P (2008) Effects of cold weather on mortality: results from 15 European cities within the PHEWE project. Am J Epidemiol 168(12):1397–1408. doi:10.1093/aje/kwn266

    CAS  Article  Google Scholar 

  4. Anderson BG, Bell ML (2009) Weather-related mortality: how heat, cold, and heat waves affect mortality in the United States. Epidemiology 20(2):205–213. doi:10.1097/EDE.0b013e318190ee08

    Article  Google Scholar 

  5. Armstrong LE, Soto J, Hacker F Jr, Casa D, Kavouras S, Maresh C (1998) Urinary indices during dehydration, exercise, and rehydration. Int J Sport Nutr 8(4):345–355

    CAS  Google Scholar 

  6. Ballester J, Robine J-M, Herrmann FR, Rodo X (2011) Long-term projections and acclimatization scenarios of temperature-related mortality in Europe. Nat Commun 2:358. http://www.nature.com/ncomms/journal/v2/n6/suppinfo/ncomms1360_S1.html

  7. Basu R, Malig B, Ostro B (2010) High ambient temperature and the risk of preterm delivery. Am J Epidemiol 172(10):1108–1117

    Article  Google Scholar 

  8. Cattiaux J, Vautard R, Cassou C, Yiou P, Masson‐Delmotte V, Codron F (2010) Winter 2010 in Europe: a cold extreme in a warming climate. Geophys Res Lett 37(20)

  9. Cheng X, Su H (2010) Effects of climatic temperature stress on cardiovascular diseases. Eur J Int Med 21(3):164–167. doi:10.1016/j.ejim.2010.03.001

    Article  Google Scholar 

  10. Cheung SS, Daanen HA (2012) Dynamic adaptation of the peripheral circulation to cold exposure. Microcirculation 19(1):65–77. doi:10.1111/j.1549-8719.2011.00126.x

    Article  Google Scholar 

  11. Curriero FC, Heiner KS, Samet JM, Zeger SL, Strug L, Patz JA (2002) Temperature and mortality in 11 cities of the eastern United States. Am J Epidemiol 155(1):80–87

    Article  Google Scholar 

  12. Dill D, Costill DL (1974) Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol 37(2):247–248

    CAS  Google Scholar 

  13. Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289(5487):2068–2074

    CAS  Article  Google Scholar 

  14. Feinfeld DA, Bargouthi H, Niaz Q, Carvounis CP (2002) Massive and disproportionate elevation of blood urea nitrogen in acute azotemia. Int Urol Nephrol 34(1):143–145

    CAS  Article  Google Scholar 

  15. Flynn A, McGreevy C, Mulkerrin EC (2005) Why do older patients die in a heatwave? QJM 98(3):227–229. doi:10.1093/qjmed/hci025

    CAS  Article  Google Scholar 

  16. Glanze WD, Anderson K, Anderson LE (1986) Mosby’s medical and nursing dictionary. Mosby

  17. Guirguis K, Gershunov A, Schwartz R, Bennett S (2011) Recent warm and cold daily winter temperature extremes in the Northern Hemisphere. Geophys Res Lett 38(17):L17701

    Article  Google Scholar 

  18. Hackney AC, Coyne JT, Pozos R, Feith S, Seale J (1995) Validity of urine-blood hydrational measures to assess total body water changes during mountaineering in the sub-Arctic. Arctic Med Res 54(2):69–77

    CAS  Google Scholar 

  19. Hajat S, Kosatky T (2010) Heat-related mortality: a review and exploration of heterogeneity. J Epidemiol Community Health 64(9):753–760. doi:10.1136/jech.2009.087999

    Article  Google Scholar 

  20. Heymsfield S, Arteaga C, McManus C, Smith J, Moffitt S (1983) Measurement of muscle mass in humans: validity of the 24-hour urinary creatinine method. Am J Clin Nutr 37(3):478–494

    CAS  Google Scholar 

  21. Honda Y, Kondo M, McGregor G, Kim H, Guo Y-L, Hijioka Y, Yoshikawa M, Oka K, Takano S, Hales S, Kovats RS (2013) Heat-related mortality risk model for climate change impact projection. Environ Health Prev Med:1–8. doi:10.1007/s12199-013-0354-6

  22. Hong YC, Rha JH, Lee JT, Ha EH, Kwon HJ, Kim H (2003) Ischemic stroke associated with decrease in temperature. Epidemiology 14(4):473–478. doi:10.1097/01.ede.0000078420.82023.e3

    Google Scholar 

  23. Hong YC, Kim H, Oh SY, Lim YH, Kim SY, Yoon HJ, Park M (2012) Association of cold ambient temperature and cardiovascular markers. Sci Total Environ 435–436:74–79. doi:10.1016/j.scitotenv.2012.02.070

    Article  Google Scholar 

  24. Hong Y-C, Kim H, Lim Y-H, Yoon H-J, Kwon Y-M, Park M (2013) Identification of RAS genotypes that modulate blood pressure change by outdoor temperature. Hypertens Res 36(6):540–545. doi:10.1038/hr.2012.218

    CAS  Article  Google Scholar 

  25. Huang C, Barnett AG, Wang X, Tong S (2012a) Effects of extreme temperatures on years of life lost for cardiovascular deaths: a time series study in Brisbane, Australia. Circ Cardiovasc Qual Outcome 5(5):609–614. doi:10.1161/CIRCOUTCOMES.112.965707

    Article  Google Scholar 

  26. Huang C, Barnett AG, Wang X, Tong S (2012b) The impact of temperature on years of life lost in Brisbane, Australia. Nat Clim Chang 2(4):265–270

    Article  Google Scholar 

  27. Huynen MM, Martens P, Schram D, Weijenberg MP, Kunst AE (2001) The impact of heat waves and cold spells on mortality rates in the Dutch population. Environ Health Perspect 109(5):463–470

    CAS  Article  Google Scholar 

  28. Inoue Y, Ichinose-Kuwahara T, Nakamura S, Ueda H, Yasumatsu H, Kondo N, Araki T (2009) Cutaneous vasodilation response to a linear increase in air temperature from 28 degrees C to 40 degrees C in prepubertal boys and young men. J Physiol Anthropol 28(3):137–144

    Article  Google Scholar 

  29. Jordan CD, Flood JG, Laposata M, Lewandrowski KB (1992) Normal reference laboratory values. N Engl J Med 327(10):718–724. doi:10.1056/NEJM199209033271009

    Article  Google Scholar 

  30. Keatinge WR, Donaldson GC, Cordioli E, Martinelli M, Kunst AE, Mackenbach JP, Nayha S, Vuori I (2000) Heat related mortality in warm and cold regions of Europe: observational study. BMJ 321(7262):670–673

    CAS  Article  Google Scholar 

  31. Kim SY, Lee JT, Hong YC, Ahn KJ, Kim H (2004) Determining the threshold effect of ozone on daily mortality: an analysis of ozone and mortality in Seoul, Korea, 1995–1999. Environ Res 94(2):113–119

    CAS  Article  Google Scholar 

  32. Landry DW, Bazari H (2011) Approach to the patient with renal disease. In: Goldman L, Schafer AI (eds) Cecil medicine, vol 1, 24th edn. Saunders Elsevier, Philadelphia

    Google Scholar 

  33. Lim YH, Kim H, Hong YC (2013) Variation in mortality of ischemic and hemorrhagic strokes in relation to high temperature. Int J Biometeorol 57(1):145–153. doi:10.1007/s00484-012-0542-x

    Article  Google Scholar 

  34. Matz R (1996) Dehydration in older adults. JAMA 275(12):911–912

    CAS  Article  Google Scholar 

  35. Maughan RJ (2012) Hydration, morbidity, and mortality in vulnerable populations. Nutr Rev 70(Suppl 2):S152–S155. doi:10.1111/j.1753-4887.2012.00531.x

    Article  Google Scholar 

  36. McMichael AJ, Wilkinson P, Kovats RS, Pattenden S, Hajat S, Armstrong B, Vajanapoom N, Niciu EM, Mahomed H, Kingkeow C, Kosnik M, O’Neill MS, Romieu I, Ramirez-Aguilar M, Barreto ML, Gouveia N, Nikiforov B (2008) International study of temperature, heat and urban mortality: the ‘ISOTHURM’ project. Int J Epidemiol 37(5):1121–1131. doi:10.1093/ije/dyn086

    Article  Google Scholar 

  37. Michelozzi P, De Sario M, Accetta G, de’Donato F, Kirchmayer U, D’Ovidio M, Perucci CA (2006) Temperature and summer mortality: geographical and temporal variations in four Italian cities. J Epidemiol Community Health 60(5):417–423. doi:10.1136/jech.2005.040857

    Article  Google Scholar 

  38. Michelozzi P, Accetta G, De Sario M, D’Ippoliti D, Marino C, Baccini M, Biggeri A, Anderson HR, Katsouyanni K, Ballester F, Bisanti L, Cadum E, Forsberg B, Forastiere F, Goodman PG, Hojs A, Kirchmayer U, Medina S, Paldy A, Schindler C, Sunyer J, Perucci CA, Group PC (2009) High temperature and hospitalizations for cardiovascular and respiratory causes in 12 European cities. Am J Respir Crit Care Med 179(5):383–389. doi:10.1164/rccm.200802-217OC

    Article  Google Scholar 

  39. Morgan D, Carver ME, Payne R (1977) Plasma creatinine and urea: creatinine ratio in patients with raised plasma urea. Br Med J 2(6092):929

    CAS  Article  Google Scholar 

  40. O’Neill MS, Zanobetti A, Schwartz J (2003) Modifiers of the temperature and mortality association in seven US cities. Am J Epidemiol 157(12):1074–1082

    Article  Google Scholar 

  41. Oppliger RA, Bartok C (2002) Hydration testing of athletes. Sports Med 32(15):959–971

    Article  Google Scholar 

  42. Oppliger RA, Magnes SA, Popowski LA, Gisolfi CV (2005) Accuracy of urine specific gravity and osmolality as indicators of hydration status. Int J Sport Nutr Exerc Metab 15(3):236–251

    Google Scholar 

  43. Payton ME, Greenstone MH, Schenker N (2003) Overlapping confidence intervals or standard error intervals: what do they mean in terms of statistical significance? J Insect Sci 3:34

    Article  Google Scholar 

  44. Revich B, Shaposhnikov D (2008) Excess mortality during heat waves and cold spells in Moscow, Russia. Occup Environ Med 65(10):691–696. doi:10.1136/oem.2007.033944

    CAS  Article  Google Scholar 

  45. Rikkert MG, Melis RJ, Claassen JA (2009) Heat waves and dehydration in the elderly. BMJ 339:b2663. doi:10.1136/bmj.b2663

    Article  Google Scholar 

  46. Schenker N, Gentleman JF (2001) On judging the significance of differences by examining the overlap between confidence intervals. Am Stat 55(3):182–186. doi:10.2307/2685796

    Article  Google Scholar 

  47. Seneviratne S, Nicholls N, Easterling D, Goodess C, Kanae S, Kossin J, Luo Y, Marengo J, McInnes K, Rahimi M (2012) Changes in climate extremes and their impacts on the natural physical environment. In: CB F, V B, TF S et al. (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC) Cambridge University Press, Cambridge, UK and New York, USA, pp 109–230

  48. Shirreffs S (2003) Markers of hydration status. Eur J Clin Nutr 57:S6–S9

    Article  Google Scholar 

  49. Sperelakis N, Tomé W (1999) Cell physiology source book. Med Phys 26:664

    Article  Google Scholar 

  50. Thomas DR, Cote TR, Lawhorne L, Levenson SA, Rubenstein LZ, Smith DA, Stefanacci RG, Tangalos EG, Morley JE (2008) Understanding clinical dehydration and its treatment. J Am Med Dir Assoc 9(5):292–301. doi:10.1016/j.jamda.2008.03.006

    Article  Google Scholar 

  51. Thornton SN (2010) Thirst and hydration: physiology and consequences of dysfunction. Physiol Behav 100(1):15–21. doi:10.1016/j.physbeh.2010.02.026

    CAS  Article  Google Scholar 

  52. Urashima M, Toyoda S, Nakano T, Matsuda S, Kobayashi N, Kitajima H, Tokushige A, Horita H, J-i A, Maekawa K (1992) BUN/Cr ratio as an index of gastrointestinal bleeding mass in children. J Pediatr Gastroenterol Nutr 15(1):89–92

    CAS  Article  Google Scholar 

  53. Wood S (2001) mgcv: GAMs and generalized ridge regression for R. R News 1(2):20–25

Download references

Acknowledgments

The study was supported by the Women Scientist Research Program (no. 2012R1A1A3005549) and Global Research Lab (no. K21004000001-10A0500-00710) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning.

Conflict of interest

None.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yun-Chul Hong.

Additional information

Youn-Hee Lim and Min-Seon Park contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 107 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lim, YH., Park, MS., Kim, Y. et al. Effects of cold and hot temperature on dehydration: a mechanism of cardiovascular burden. Int J Biometeorol 59, 1035–1043 (2015). https://doi.org/10.1007/s00484-014-0917-2

Download citation

Keywords

  • Apparent temperature
  • Biomarkers
  • Dehydration
  • Piece-wise linear regression
  • Weather