Aldridge G, Inouye DW, Forrest JRK, Barr WA, Miller-Rushing AJ (2011) Emergence of a mid-season period of low floral resources in a montane meadow ecosystem associated with climate change. J Ecol 99(4):905–913. doi:10.1111/j.1365-2745.2011.01826.x
Article
Google Scholar
Aono Y, Kazui K (2008) Phenological data series of cherry tree flowering in Kyoto, Japan, and its application to reconstruction of springtime temperatures since the 9th century. Int J Climatol 28(7):905–914. doi:10.1002/joc.1594
Article
Google Scholar
Bartomeus I, Ascher JS, Wagner D, Danforth BN, Colla S, Kornbluth S, Winfree R (2011) Climate-associated phenological advances in bee pollinators and bee-pollinated plants. Proc Natl Acad Sci U S A 108(51):20645–20649. doi:10.1073/pnas.1115559108
CAS
Article
Google Scholar
Borchert R (1994) Soil and stem water storage determine phenology and distribution of tropical dry forest trees. Ecology 75:1437–1449
Article
Google Scholar
Both C, Bouwhuis S, Lessells CM, Visser ME (2006) Climate change and population declines in a long-distance migratory bird. Nature 441(7089):81–83. doi:10.1038/nature04539
CAS
Article
Google Scholar
Bradley NL, Leopold AC, Ross J, Huffaker W (1999) Phenological changes reflect climate change in Wisconsin. Proc Natl Acad Sci U S A 96(17):9701–9704. doi:10.1073/pnas.96.17.9701
CAS
Article
Google Scholar
Buckley L, Foushee M (2012) Footprints of climate change in US national park visitation. Int J Biometeorol 56(6):1173–1177. doi:10.1007/s00484-011-0508-4
Article
Google Scholar
Burkle LA, Marlin JC, Knight TM (2013) Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 339(6127):1611–1615. doi:10.1126/science.1232728
CAS
Article
Google Scholar
Chuine I (2010) Why does phenology drive species distribution? Philos Trans R Soc B Biol Sci 365(1555):3149–3160. doi:10.1098/rstb.2010.0142
Article
Google Scholar
Chung U, Mack L, Yun JI, Kim SH (2011) Predicting the timing of cherry blossoms in Washington, DC and Mid-Atlantic states in response to climate change. PloS ONE 6(11), doi:10.1371/journal.pone.0027439
Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007) Shifting plant phenology in response to global change. Trends Ecol Evol 22(7):357–365. doi:10.1016/j.tree.2007.04.003
Article
Google Scholar
Cook BI, Wolkovich EM, Parmesan C (2012) Divergent responses to spring and winter warming drive community level flowering trends. Proc Natl Acad Sci U S A 109(23):9000–9005. doi:10.1073/pnas.1118364109
CAS
Article
Google Scholar
Crimmins TM, Crimmins MA, Bertelsen CD (2011) Onset of summer flowering in a ‘Sky Island’ is driven by monsoon moisture. New Phytol 191(2):468–479. doi:10.1111/j.1469-8137.2011.03705.x
Article
Google Scholar
Crimmins TM, Crimmins MA, Bertelsen CD (2013) Spring and summer patterns in flowering onset, duration, and constancy across a water-limited gradient. Am J Bot 100(6):1137–1147. doi:10.3732/ajb.1200633
Article
Google Scholar
Diez JM, Ibanez I, Miller-Rushing AJ, Mazer SJ, Crimmins TM, Crimmins MA, Bertelsen CD, Inouye DW (2012) Forecasting phenology: from species variability to community patterns. Ecol Lett 15(6):545–553. doi:10.1111/j.1461-0248.2012.01765.x
Article
Google Scholar
Durant JM, Hjermann DO, Anker-Nilssen T, Beaugrand G, Mysterud A, Pettorelli N, Stenseth NC (2005) Timing and abundance as key mechanisms affecting trophic interactions in variable environments. Ecol Lett 8(9):952–958. doi:10.1111/j.1461-0248.2005.00798.x
Article
Google Scholar
Euskirchen ES, Carman TB, McGuire AD (2013) Changes in the structure and function of northern Alaskan ecosystems when considering variable leaf-out times across groupings of species in a dynamic vegetation model. Glob Chang Biol In Press
Fitter AH, Fitter RSR (2002) Rapid changes in flowering time in British plants. Science 296(5573):1689–1691. doi:10.1126/science.1071617
CAS
Article
Google Scholar
Frankie GW, Baker HG, Opler PA (1974) Comparative phenological studies of trees in tropical wet and dry forests in lowlands of Costa Rica. J Ecol 62:881–919
Article
Google Scholar
Franks SJ, Sim S, Weis AE (2007) Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc Natl Acad Sci 104(4):1278–1282. doi:10.1073/pnas.0608379104
CAS
Article
Google Scholar
Fridley JD (2012) Extended leaf phenology and the autumn niche in deciduous forest invasions. Nature 485(7398):359–362. doi:10.1038/nature11056
CAS
Article
Google Scholar
Gienapp P, Teplitsky C, Alho J, Mills J, Merilä J (2008) Climate change and evolution: disentangling environmental and genetic responses. Mol Ecol 17(1):167–178
CAS
Article
Google Scholar
Gordo O, Sanz JJ (2009) Long-term temporal changes of plant phenology in the Western Mediterranean. Glob Chang Biol 15(8):1930–1948. doi:10.1111/j.1365-2486.2009.01851.x
Article
Google Scholar
Grulke NE (2011) The nexus of host and pathogen phenology: understanding the disease triangle with climate change. New Phytol 189(1):8–11. doi:10.1111/j.1469-8137.2010.03568.x
Article
Google Scholar
Haggerty BP, Matthews ER, Gerst KL, Evenden AG, Mazer SJ (2013) The California Phenology Project: tracking plant responses to climate change. Madroño 60(1):1–3. doi:10.3120/0024-9637-60.1.1
Article
Google Scholar
Hoffmann A, Sgrò C (2011) Climate change and evolutionary adaptation. Nature 470:479–485. doi:10.1038/nature09670
CAS
Article
Google Scholar
Hu Q, Weiss A, Feng S, Baenziger PS (2005) Earlier winter wheat heading dates and warmer spring in the US Great Plains. Agr Forest Meteorol 135(1–4):284–290. doi:10.1016/j.agrformet.2006.01.001
Article
Google Scholar
Hufkens K, Friedl M, Sonnentag O, Braswell BH, Milliman T, Richardson AD (2012) Linking near-surface and satellite remote sensing measurements of deciduous broadleaf forest phenology. Remote Sens Environ 117:307–321. doi:10.1016/j.rse.2011.10.006
Article
Google Scholar
Ibanez I, Primack RB, Miller-Rushing AJ, Ellwood E, Higuchi H, Lee SD, Kobori H, Silander JA (2010) Forecasting phenology under global warming. Philos Trans R Soc B Biol Sci 365(1555):3247–3260. doi:10.1098/rstb.2010.0120
Article
Google Scholar
Inouye DW (2008) Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology 89(2):353–362. doi:10.1890/06-2128.1
Article
Google Scholar
Inouye DW, McGuire AD (1991) Effects of snowpack on timing and abundance of flowering in Delphinium nelsonii (Ranunculaceae): implications for climate change. Am J Bot 78(7):997–1001
Article
Google Scholar
Inouye DW, Barr B, Armitage KB, Inouye BD (2000) Climate change is affecting altitudinal migrants and hibernating species. Proc Natl Acad Sci U S A 97(4):1630–1633. doi:10.1073/pnas.97.4.1630
CAS
Article
Google Scholar
IPCC (2007) Climate change 2007: synthesis report. Contributions of Working Groups I, II, and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland
Jeong S-J, Medvigy D, Shevliakova E, Malyshev S (2013) Predicting changes in temperate forest budburst using continental-scale observations and models. Geophys Res Lett 40(2):359–364. doi:10.1029/2012Gl054431
Article
Google Scholar
Keeling CD, Chin JFS, Whorf TP (1996) Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 382(6587):146–149. doi:10.1038/382146a0
CAS
Article
Google Scholar
Koch E, Bruns E, Chmielewski FM, Defila C, Lipa W, Menzel A (2007) Guidelines for plant phenological observations. World Climate Data and Monitoring Programme
Liang L, Schwartz M (2013) Testing a growth efficiency hypothesis with continental-scale phenological variations of common and cloned plants. Int J Biometeorol In Press.
McKinney AM, CaraDonna PJ, Inouye DW, Barr B, Bertelsen CD, Waser NM (2012) Asynchronous changes in phenology of migrating Broad-tailed Hummingbirds and their early-season nectar resources. Ecology 93(9):1987–1993
Article
Google Scholar
Meier U (2001) Growth stages of mono-and dicotyledonous plants. BBCH Monograph. Federal Biological Research Centre for Agriculture and Forestry, Germany
Google Scholar
Menzel A, Seifert H, Estrella N (2011) Effects of recent warm and cold spells on European plant phenology. Int J Biometeorol 55(6):921–932. doi:10.1007/s00484-011-0466-x
Article
Google Scholar
Miller-Rushing AJ, Inouye DW (2009) Variation in the impact of climate change on flowering phenology and abundance: an examination of two pairs of closely related wildflower species. Am J Bot 96(10):1821–1829. doi:10.3732/ajb.0800411
Article
Google Scholar
Miller-Rushing AJ, Primack RB (2008) Global warming and flowering times in Thoreau’s concord: a community perspective. Ecology 89(2):332–341. doi:10.1890/07-0068.1
Article
Google Scholar
Miller-Rushing AJ, Inouye DW, Primack RB (2008a) How well do first flowering dates measure plant responses to climate change? The effects of population size and sampling frequency. J Ecol 96(6):1289–1296. doi:10.1111/j.1365-2745.2008.01436.x
Article
Google Scholar
Miller-Rushing AJ, Lloyd-Evans TL, Primack RB, Satzinger P (2008b) Bird migration times, climate change, and changing population sizes. Glob Chang Biol 14(9):1959–1972. doi:10.1111/j.1365-2486.2008.01619.x
Article
Google Scholar
Miller-Rushing AJ, Hoye TT, Inouye DW, Post E (2010) The effects of phenological mismatches on demography. Philos Trans R Soc B Biol Sci 365(1555):3177–3186. doi:10.1098/rstb.2010.0148
Article
Google Scholar
Morellato LPC, Camargo MGG, D’Eça Neves FF, Luize BG, Mantovani A, Hudson IL (2010) The influence of sampling method, sample size, and frequency of observations on plant phenological patterns and interpretation in tropical forest trees. In: Hudson IL, Keatley MR (eds) Phenological research: methods for environmental and climate change analysis, 1st edn. Springer, Netherlands, pp 99–121. doi:10.1007/978-90-481-3335-2_5
Ovaskainen O, Skorokhodova S, Yakovleva M, Sukhov A, Kutenkov A, Kutenkova N, Shcherbakov A, Meyke E, MdM D (2013) Community-level phenological response to climate change. Proc Natl Acad Sci. doi:10.1073/pnas.1305533110
Google Scholar
Parmesan C (2006) Ecological and evolutionary responses to recent climate change. In: Annual Review of Ecology Evolution and Systematics, vol 37. Annual Review of Ecology Evolution and Systematics. pp 637–669. doi:10.1146/annurev.ecolsys.37.091305.110100.
Parmesan C (2007) Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob Chang Biol 13(9):1860–1872. doi:10.1111/j.1365-2486.2007.01404.x
Article
Google Scholar
Peñuelas J, Filella I, Comas P (2002) Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Glob Chang Biol 8(6):531–544. doi:10.1046/j.1365-2486.2002.00489.x
Article
Google Scholar
Richardson AD, Bailey AS, Denny EG, Martin CW, O’Keefe J (2006) Phenology of a northern hardwood forest canopy. Glob Chang Biol 12(7):1174–1188. doi:10.1111/j.1365-2486.2006.01164.x
Article
Google Scholar
Richardson AD, Braswell BH, Hollinger DY, Jenkins JP, Ollinger SV (2009) Near-surface remote sensing of spatial and temporal variation in canopy phenology. Ecol Appl 19(6):1417–1428. doi:10.1890/08-2022.1
Article
Google Scholar
Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421(6918):57–60. doi:10.1038/nature01333
CAS
Article
Google Scholar
Rosemartin AH, Crimmins TM, Enquist CAF, Gerst KL, Kellermann JL, Posthumus EE, Denny EG, Guertin P, Marsh L, Weltzin JF (2013) Organizing phenological data resources to inform natural resource conservation. Biol Conserv. doi:10.1016/j.biocon.2013.07.003, In Press
Google Scholar
Schwartz MD, Ahas R, Aasa A (2006) Onset of spring starting earlier across the Northern Hemisphere. Glob Chang Biol 12(2):343–351. doi:10.1111/j.1365-2486.2005.01097.x
Article
Google Scholar
Schwartz MD, Ault TR, Betancourt JL (2012a) Spring onset variations and trends in the continental United States: past and regional assessment using temperature-based indices. Int J Climatol. doi:10.1002/joc.3625
Google Scholar
Schwartz MD, Betancourt JL, Weltzin JF (2012b) From Caprio’s lilacs to the USA National Phenology Network. Front Ecol Environ 10(6):324–327
Article
Google Scholar
Schwartz M, Beaubien E, Crimmins T, Weltzin J (2013) North America. In: Schwartz MD (ed) Phenology: an integrative environmental science, 2nd edn. Springer, Netherlands
Chapter
Google Scholar
Sparks TH, Carey PD (1995) The responses of species to climate over 2 centuries - an analysis of the Marsham phenological record, 1736–1947. J Ecol 83(2):321–329. doi:10.2307/2261570
Article
Google Scholar
Sparks TH, Bairlein F, Bojarinova JG, Hüppop O, Leihikoinen EA, Rainio K, Sokolov LV, Walker D (2005) Examining the total arrival distribution of migratory birds. Glob Chang Biol 11:22–30
Article
Google Scholar
Thackeray SJ, Sparks TH, Frederiksen M, Burthe S, Bacon PJ, Bell JR, Botham MS, Brereton TM, Bright PW, Carvalho L, Clutton-Brock T, Dawson A, Edwards M, Elliott JM, Harrington R, Johns D, Jones ID, Jones JT, Leech DI, Roy DB, Scott WA, Smith M, Smithers RJ, Winfield IJ, Wanless S (2010) Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob Chang Biol 16(12):3304–3313. doi:10.1111/j.1365-2486.2010.02165.x
Article
Google Scholar
Thomson JD (1980) Skewed flowering distributions and pollinator attraction. Ecology 61(3):572–579
Article
Google Scholar
Tierney G, Mitchell B, Miller-Rushing A, Katz J, Denny E, Brauer C, Donovan T, Richardson AD, Toomey M, Kozlowski A, Weltzin J, Gerst K, Sharron E, Sonnentag O, Dieffenbach F (2013) Phenology monitoring protocol: Northeast Temperate Network. Natural Resource Report. NPS/NETN/NRR—2013/681. Fort Collins, CO
Tooke F, Battey NH (2010) Temperate flowering phenology. J Exp Bot 61(11):2853–2862. doi:10.1093/jxb/erq165
CAS
Article
Google Scholar
van Asch M, Visser ME (2007) Phenology of forest caterpillars and their host trees: The importance of synchrony. In: Annual Review of Entomology, vol 52. Annual Review of Entomology. pp 37–55. doi:10.1146/annurev.ento.52.110405.091418
Van Vliet AJH, Overeem A, De Groot RS, Jacobs AFG, Spieksma FTM (2002) The influence of temperature and climate change on the timing of pollen release in the Netherlands. Int J Climatol 22(14):1757–1767. doi:10.1002/joc.820
Article
Google Scholar
Vitasse Y, Porte AJ, Kremer A, Michalet R, Delzon S (2009) Responses of canopy duration to temperature changes in four temperate tree species: relative contributions of spring and autumn leaf phenology. Oecologia 161(1):187–198. doi:10.1007/s00442-009-1363-4
Article
Google Scholar
Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier spring increase western US forest wildfire activity. Science 313(5789):940–943. doi:10.1126/science.1128834
CAS
Article
Google Scholar
Willis CG, Ruhfel B, Primack RB, Miller-Rushing AJ, Davis CC (2008) Phylogenetic patterns of species loss in Thoreau’s woods are driven by climate change. Proc Natl Acad Sci U S A 105(44):17029–17033. doi:10.1073/pnas.0806446105
CAS
Article
Google Scholar
Wolfe DW, Schwartz MD, Lakso AN, Otsuki Y, Pool RM, Shaulis NJ (2005) Climate change and shifts in spring phenology of three horticultural woody perennials in northeastern USA. Int J Biometeorol 49(5):303–309. doi:10.1007/s00484-004-0248-9
Article
Google Scholar
Wolkovich EM, Cook BI, Allen JM, Crimmins TM, Betancourt JL, Travers SE, Pau S, Regetz J, Davies TJ, Kraft NJB, Ault TR, Bolmgren K, Mazer SJ, McCabe GJ, McGill BJ, Parmesan C, Salamin N, Schwartz MD, Cleland EE (2012) Warming experiments underpredict plant phenological responses to climate change. Nature 485(7399):494–497. doi:10.1038/nature11014
CAS
Google Scholar
Ziska L, Knowlton K, Rogers C, Dalan D, Tierney N, Elder MA, Filley W, Shropshire J, Ford LB, Hedberg C, Fleetwood P, Hovanky KT, Kavanaugh T, Fulford G, Vrtis RF, Patz JA, Portnoy J, Coates F, Bielory L, Frenz D (2011) Recent warming by latitude associated with increased length of ragweed pollen season in central North America. Proc Natl Acad Sci U S A 108(10):4248–4251. doi:10.1073/pnas.1014107108
CAS
Article
Google Scholar