Skip to main content

Advertisement

Log in

Spatial structure of the abiotic environment and its association with sapling community structure and dynamics in a cloud forest

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Analyzing the relationship between the spatial structures of environmental variables and of the associated seedling and sapling communities is crucial to understanding the regeneration processes in forest communities. The degree of spatial structuring (i.e., spatial autocorrelation) of environmental and sapling community variables in the cloud forest of Teipan, S Mexico, were analyzed at a 1-ha scale using geostatistical analysis; after fitting semivariogram models for each set of variables, the association between the two sets was examined through cross-variograms. Kriging maps of the sapling community variables (density, cover, species richness, and mortality and recruitment rates) were obtained through conditional simulation method. Canopy openness, total solar radiation, litter depth, soil temperature and soil moisture were spatially structured, as were sapling density, species richness and sapling mortality rate. Mean range in semivariograms for environmental and sapling community variables were 13.14 ± 3.67 and 12.68 ± 5.71 m (±SE), respectively. The spatial structure of litter depth was negatively associated with the spatial structures of sapling density, species richness, and sapling community cover; in turn, the spatial structure of soil moisture was positively associated with the spatial structure of recruitment rate. These associations of the spatial structures of abiotic and sapling community variables suggest that the regeneration processes in this cloud forest is driven by the existence of different microsites, largely characterized by litter depth variations, across which saplings of tree species encounter a range of opportunities for successful establishment and survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abd Latif Z, Blackburn GA (2010) The effects of gap size on some microclimate variables during late summer and autumn in a temperate broadleaved deciduous forest. Int J Biometeorol 54:119–129

    Article  Google Scholar 

  • Anderson TM, McNaughton SJ, Ritchie ME (2004) Scale-dependent relationships between the spatial distribution of a limiting resource and plant species diversity in an African grassland ecosystem. Oecologia 139:277–287

    Article  Google Scholar 

  • Arriaga L (1988) Gap dynamics of a tropical cloud forest in NE Mexico. Biotropica 20:178–184

    Article  Google Scholar 

  • Arriaga L (2000) Gap-building-phase regeneration in a tropical montane cloud forest of north-eastern Mexico. J Trop Ecol 16:535–562

    Article  Google Scholar 

  • Augspurger CK (1983) Offspring recruitment around tropical trees: changes in cohort distance with time. Oikos 40:189–196

    Article  Google Scholar 

  • Banerjee S, Carlin BP, Gelfand AE (2004) Hierarchical modelling and analysis for spatial data. Chapman and Hall, New York

    Google Scholar 

  • Baraloto C, Goldberg DE (2004) Microhabitat associations and seedling bank dynamics in a neotropical forest. Oecologia 141:701–712

    Article  Google Scholar 

  • Becerra P, Celis-Diez JL, Bustamante RO (2004) Effects of leaf litter and precipitation on germination and seedling survival of the endangered tree Beilschmiedia miersii. Appl Veg Sci 7:253–257

    Article  Google Scholar 

  • Becker P, Smith A (1990) Spatial autocorrelation of solar radiation in a tropical moist forest understorey. Agric For Meteorol 52:373–379

    Article  Google Scholar 

  • Bellingham PJ, Tanner EVJ (2000) The influence of topography on tree growth, mortality, and recruitment in a tropical montane forest. Biotropica 2:378–384

    Google Scholar 

  • Bruckner A, Kandeler E, Kampichler C (1999) Plot-scale spatial patterns of soil water content, pH, substrate-induced respiration and N mineralization in a temperate coniferous forest. Geoderma 93:207–223

    Article  CAS  Google Scholar 

  • Bruijnzeel LA, Proctor J (1995) Hydrology and biochemistry of tropical montane cloud forests: what do we really know? In: Hamilton L, Juvik JO, Scatena FN (eds) tropical montane cloud forest. Springer, New York, pp 38–78

    Chapter  Google Scholar 

  • Bulit C, Díaz-Avalos C, Signoret M, Montagnes D (2003) Spatial structure of ciliate patches in a tropical coastal lagoon: an application of geostatistical methods. Aquat Microb Ecol 30:185–193

    Article  Google Scholar 

  • Bulit C, Díaz-Avalos C, Montagnes D (2004) Assessing spatial and temporal patchiness of the autotrophic cilliate Myrionecta rubra: a case study in a coastal lagoon. Mar Ecol Prog Ser 268:55–67

    Article  Google Scholar 

  • Busing RT, Brokaw N (2002) Tree species diversity in temperate and tropical forest gaps: the role of lottery recruitment. Folia Geobot 37:33–43

    Article  Google Scholar 

  • Chilés J-P, Delfiner P (1999) Geostatistics: modelling spatial uncertainty. Wiley, New York

    Google Scholar 

  • Dalling JW, Hubbell SP, Silvera K (1998) Seed dispersal, seedling establishment and gap partitioning among tropical pioneer trees. J Ecol 86:674–689

    Google Scholar 

  • Dalling JW, Muller-Landau HC, Wright SJ, Hubbell SP (2002) Role of dispersal in the recruitment limitation of neotropical pioneer species. J Ecol 90:714–727

    Article  Google Scholar 

  • Damgaard C (2008) Modelling pin-point plant cover data along an environmental gradient. Ecol Model 214:404–410

    Article  Google Scholar 

  • Daws MI, Pearson TRH, Burslem DFRP, Mullins CE, Dalling JW (2005) Effects of topographic position, leaf litter and seed size on seedling demography in a semi-deciduous tropical forest in Panama. Plant Ecol 179:93–105

    Article  Google Scholar 

  • De la Cruz Rot M (2006) Introducción al análisis de datos mapeados o algunas de las (muchas) cosas que puedo hacer si tengo coordenadas. Ecosistemas 15:19–39

    Google Scholar 

  • Denslow JS, Ellison AM, Sanford RE (1998) Treefall gap size effects on above- and below-ground processes in a tropical wet forest. J Ecol 86:597–609

    Article  Google Scholar 

  • Dormann CF, McPherson JM, Araujo MB, Bivand R, Bolliger J, Carl G, Davis RG, Hirzel A, Jetz W, Kissling D, Kühn I, Ohlemüller R, Peres-Neto PR, Reineking B, Schröder B, Schurr FM, Wilson R (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628

    Article  Google Scholar 

  • Duncan RP, Stewart GH (1991) The temporal and spatial analysis of tree age distributions. Can J For Res 21:1703–1710

    Article  Google Scholar 

  • Dutilleul P, Legendre P (1993) Spatial heterogeneity against heteroscedasticity: an ecological paradigm versus a statistical concept. Oikos 66:152–171

    Article  Google Scholar 

  • Fajardo A, McIntire EJB (2007) Distinguishing microsite and competition processes in tree growth dynamics: an a priori spatial modeling approach. Am Nat 169:647–661

    Article  Google Scholar 

  • Forget P-M, Mercier F, Collinet F (1999) Spatial patterns of two rodent-dispersed rain forest trees Carapa procera (Meliaceae) and Vouacapoua americana (Caesalpiniaceae) at Paracou, French Guiana. J Trop Ecol 15:301–313

    Article  Google Scholar 

  • Friedenberg NA (2003) Determinism in a transient assemblage: the roles of dispersal and local competition. Am Nat 162:586–596

    Article  Google Scholar 

  • García E (2004) Modificaciones al sistema de clasificación climática de Köppen. Universidad Nacional Autónoma de México, Mexico City

    Google Scholar 

  • Gentry AH (1995) Patterns of diversity and floristic composition in neotropical montane forests. In: Churchill SP, Balslev H, Forero M, Lutein JL (eds) Biodiversity and conservation of neotropical forests. The New York Botanical Garden Press, New York, pp 103–126

    Google Scholar 

  • Gómez JM, Valladares F, Puerta-Piñero C (2004) Differences between structural and functional environmental heterogeneity caused by seed dispersal. Funct Ecol 18:787–792

    Article  Google Scholar 

  • Gómez-Aparicio L (2008) Spatial patterns of recruitment in Mediterranean plant species: linking the fate of seeds, seedlings and saplings in heterogeneous landscapes at different scales. J Ecol 96:1128–1140

    Article  Google Scholar 

  • Gómez-Aparicio L, Gómez JM, Zamora R (2005a) Microhabitats shift rank in suitability for seedling establishment depending on habitat type and climate. J Ecol 93:1194–1202

    Article  Google Scholar 

  • Gómez-Aparicio L, Valladares F, Zamora R, Quero JL (2005b) Response of tree seedlings to the abiotic heterogeneity generated by nurse shrubs: an experimental approach at different scales. Ecography 28:757–768

    Article  Google Scholar 

  • González-Megías A, Gómez JM, Sánchez-Piñero F (2007) Diversity-habitat heterogeneity relationship at different spatial and temporal scales. Ecography 30:31–41

    Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York

    Google Scholar 

  • Grant RH (1997) Partitioning of biologically active radiation in plant canopies. Int J Biometeorol 40:26–40

    Article  Google Scholar 

  • Gratzer G, Canham C, Dieckmann U, Fischer A, Iwasa Y, Law R, Lexer MJ, Sandmann H, Spies TA, Splechtna BE, Szwagrzyk J (2004) Spatio-temporal development of forests - current trends in field methods and models. Oikos 107:3–15

    Article  Google Scholar 

  • Hamilton LS, Juvik JO, Scatena FN (1995) The Puerto Rico tropical cloud forest symposium: introduction and workshop synthesis. In: Hamilton L, Juvik JO, Scatena FN (eds) Tropical montane cloud forest. Springer, New York, pp 1–23

    Chapter  Google Scholar 

  • Harms KE, Wright SJ, Calderón O, Hernández A, Herre EA (2000) Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. Nature 404:493–495

    Article  CAS  Google Scholar 

  • Harms KE, Condit R, Hubbell SP, Foster RB (2001) Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. J Ecol 89:947–959

    Article  Google Scholar 

  • Hubbell SP, Foster RB, O'Brien ST, Harms KE, Condit R, Wechsler B, Wright SJ, de Lao SL (1999) Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science 283:554–557

    Article  CAS  Google Scholar 

  • Hughes JW, Fahey TJ (1998) Seed dispersal and colonization in a disturbed northern hardwood forest. Bull Torrey Bot Club 115:89–99

    Article  Google Scholar 

  • IG-UNAM [Instituto de Geografía, Universidad Nacional Autónoma de México] (1970) Carta de Climas. 1:500,000. Oaxaca. 14Q-VIII. Instituto de Geografía, Universidad Nacional Autónoma de México, Mexico City

    Google Scholar 

  • Itoh A, Yamakura T, Ogino K, Lee HS, Ashton PS (1997) Spatial distribution pattern of two predominant emergent trees in a tropical rainforest in Sarawak, Malaysia. Plant Ecol 132:121–136

    Article  Google Scholar 

  • Jordano P, Pulido F, Arroyo J, García-Castaño JL, García-Fayos P (2004) Procesos de limitación demográfica. In: Valladares F (ed) Ecología del bosque mediterráneo en un mundo cambiante. Ministerio de Medio Ambiente, EGRAF, S.A, Madrid, pp 229–248

    Google Scholar 

  • Kappelle M (1996) Los bosques de roble (Quercus) de la Cordillera de Talamanca, Costa Rica: biodiversidad, ecología, conservación y desarrollo. University of Amsterdam (UvA), Amsterdam, and Instituto Nacional de Biodiversidad (INBio), Santo Domingo de Heredia

    Google Scholar 

  • Kappelle M, Uffelen J, Cleef AM (1995) Altitudinal zonation of montane Quercus forests along two transects in Chirripó National Park, Costa Rica. Vegetatio 119:119–153

    Article  Google Scholar 

  • Kint V, van Meirvenne M, Nachtergale L, Geudens G, Lust N (2003) Spatial methods for quantifying forest stand structure development: a comparison between nearest-neighbor indices and variogram analysis. For Sci 49:36–49

    Google Scholar 

  • Kitajima K, Augspurger CK (1989) Seed and seedling ecology of a monocarpic tropical tree, Tachigalia versicolor. Ecology 70:1102–1114

    Article  Google Scholar 

  • Kobe RK (2006) Sapling growth as a function of light and landscape-level variation in soil water and foliar nitrogen in northern Michigan. Oecologia 147:119–133

    Article  Google Scholar 

  • Lawrence RHE, Anderson BJ, de Groot A, Bill A, McQueen AMM, Steel JB, Mistral M, Mason NWH, Wilson JB (2007) Spatial autocorrelation in plant communities: vegetation texture versus species composition. Ecography 30:801–811

    Article  Google Scholar 

  • Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659–1673

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Matrix algebra: a summary. In: Legendre P, Legendre L (eds) Numerical ecology. Elsevier, Amsterdam, pp 51–95

    Google Scholar 

  • Legendre P, Dale MRT, Fortin M, Gurevitch J, Hohn M, Myers D (2002) The consequences of spatial structure for the design and analysis of ecological field survival. Ecography 25:601–615

    Article  Google Scholar 

  • LePage PT, Canham CD, Coates KD, Bartemucci P (2000) Seed abundance versus substrate limitation of seedling recruitment in northern temperate forest of British Columbia. Can J For Res 30:415–427

    Article  Google Scholar 

  • Levine JM, Murrell DJ (2003) The community-level consequences of seed dispersal patterns. Annu Rev Ecol Evol Syst 34:549–574

    Article  Google Scholar 

  • Liebhold AM, Gurevitch J (2002) Integrating the statistical analysis of spatial data in ecology. Ecography 25:553–557

    Article  Google Scholar 

  • Mejía-Domínguez NR (2006) Dinámica de la comunidad de árboles de un bosque mesófilo de montaña en la Sierra Madre del Sur (Oaxaca), México. MSc thesis, Universidad Nacional Autónoma de México, Mexico City

  • Mejía-Domínguez NR, Meave JA, Ruiz-Jiménez CA (2004) Análisis estructural de una parcela de una hectárea de bosque mesófilo de montaña en el extremo oriental de la Sierra Madre del Sur (Oaxaca), México. Bol Soc Bot Méx 74:13–29

    Google Scholar 

  • Miller TF, Mladenoff DJ, Clayton MK (2002) Old-growth northern hardwood forests: spatial autocorrelation and patterns of understory vegetation. Ecol Monogr 72:487–503

    Article  Google Scholar 

  • Møller J (2003) Spatial statistics and computational methods. Springer, New York

    Google Scholar 

  • Montgomery RA, Chazdon RL (2001) Forest structure, canopy architecture, and light transmittance in tropical wet forests. Ecology 82:2707–2718

    Article  Google Scholar 

  • Montgomery RA, Chazdon RL (2002) Light gradient partitioning by tropical tree seedlings in the absence of canopy gaps. Oecologia 131:165–174

    Article  Google Scholar 

  • Muller-Landau HC, Wrigth SJ, Calderón O, Hubbell SP, Foster RB (2002) Assessing recruitment limitation: concepts, methods and case-studies from a tropical forest. In: Levey DJ, Silva WR, Galletti M (eds) Seed dispersal and frugivory: ecology, evolution and conservation. CABI, Wallingford, pp 35–53

    Google Scholar 

  • Nathan R, Safriel UN, Noy-Meir I, Schiller G (2000) Spatiotemporal variation in seed dispersal and recruitment near and far from Pinus halepensis trees. Ecology 81:2156–2169

    Google Scholar 

  • Nicotra AB, Chazdon RL, Iriarte SVB (1999) Spatial heterogeneity of light and woody seedling regeneration in tropical wet forests. Ecology 80:1908–1926

    Article  Google Scholar 

  • Ortiz-Arrona C (1999) Environmental effects on cloud forest tree seedling establishment under a Pinus canopy in Mexico. MSc thesis, University of Aberdeen

  • Poulsen AD, Tuomisto H, Balslev H (2006) Edaphic and floristic variation within a 1-ha plot of lowland Amazonian rain forest. Biotropica 38:468–478

    Article  Google Scholar 

  • Rathbun SL, Fei S (2006) A spatial zero-inflated poisson regression model for oak regeneration. Environ Ecol Stat 13:409–426

    Article  Google Scholar 

  • Ribeiro JrPJ, Diggle PJ (2001) geoR: a package for geostatistical analysis. R-NEWS 1:15–18

    Google Scholar 

  • Roburn AE (2003) Light transmission and understory vegetation in old-growth riparian stands: a study in spatial pattern. MSc thesis, Simon Fraser University, Burnaby

  • Schupp EW (1988) Factors affecting post-dispersal seed survival in a tropical forest. Oecologia 76:525–530

    Google Scholar 

  • Schupp EW, Howe HF, Augspurger CK, Levey DJ (1989) Arrival and survival in tropical treefall gaps. Ecology 70:562–564

    Article  Google Scholar 

  • Segurado P, Araujo MB, Kunin WE (2006) Consequences of spatial autocorrelation for niche-based models. J Appl Ecol 43:433–444

    Article  Google Scholar 

  • Sheil D (1995) Evaluating turnover in tropical forests. Science 268:894–996

    Article  CAS  Google Scholar 

  • Sheil D (2001) Long-term observations of rain forest succession, tree diversity and responses to disturbance. Plant Ecol 155:183–199

    Article  Google Scholar 

  • Stadtmüller T (1987) Los bosques nublados en el trópico húmedo. Universidad de las Naciones Unidas, San José

    Google Scholar 

  • Tilman D, Kareiva P (1997) Spatial ecology: the role of space in population dynamics and interspecific interactions. Princeton University Press, Princeton

    Google Scholar 

  • Trichon V, Walter JN, Laumonier Y (1998) Identifying spatial patterns in the tropical rain forest structure using hemispherical photographs. Plant Ecol 137:227–244

    Article  Google Scholar 

  • Vasconcelos SS, Zarina DJ, Araújo MM, Rangel-Vasconcelos LGT, de Carvalho CJS, Staudhammer CL, Oliveira FA (2008) Effects of seasonality, litter removal and dry-season irrigation on litterfall quantity and quality in eastern Amazonian forest regrowth. Braz J Trop Ecol 24:27–38

    Google Scholar 

  • Vázquez-Yanes C, Orozco-Segovia A (1992) Effects of litter from a tropical rainforest on tree seed germination and establishment under controlled conditions. Tree Physiol 11:392–400

    Google Scholar 

  • Walter J-M, Himmier CG (1996) Spatial heterogeneity of a Scots pine canopy: an assessment by hemispherical photographs. Can J For Res 26:1610–1619

    Article  Google Scholar 

  • Webb CO, Peart DR (2000) Habitat associations of trees and seedlings in a Bornean rain forest. J Ecol 88:464–478

    Article  Google Scholar 

  • Weiner J, Stoll P, Muller-Landau H, Jasentuliyana A (2001) The effects of density, spatial pattern, and competitive symmetry on size variation in simulated plant populations. Am Nat 158:438–450

    Article  CAS  Google Scholar 

  • Welden CW, Hewett SW, Hubbell SP, Foster RB (1991) Sapling survival, growth, and recruitment: relationship to canopy height in a neotropical forest. Ecology 72:35–50

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the community of Teipan for allowing us to work in their forests. N.M.-D. received a doctoral scholarship as a graduate student enrolled in the Graduate Programme in Biological Sciences (Universidad Nacional Autónoma de México) and a grant from the Graduate Student Fund from the Mexican Science Council (CONACyT) that partially funded this research. The Faculty of Sciences (UNAM) provided additional funding. We gratefully acknowledge Trudy Kavanagh and Teresa Valverde for proofreading and providing valuable comments on a previous version. We dedicate this paper to the memory of Laura Arriaga-Cabrera, whose profound and passionate interest in cloud forest ecology inspired and stimulated this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy R. Mejía-Domínguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mejía-Domínguez, N.R., Meave, J.A. & Díaz-Ávalos, C. Spatial structure of the abiotic environment and its association with sapling community structure and dynamics in a cloud forest. Int J Biometeorol 56, 305–318 (2012). https://doi.org/10.1007/s00484-011-0434-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-011-0434-5

Keywords

Navigation