Skip to main content
Log in

Die EAN-NeuPSIG-Leitlinie zur Diagnostik bei neuropathischen Schmerzen – eine Kurzfassung

The EAN-NeuPSIG guideline on the diagnosis of neuropathic pain—a summary

  • Übersichten
  • Published:
Der Schmerz Aims and scope Submit manuscript

Zusammenfassung

In dieser gemeinsamen Leitlinie der im Titel genannten Fachgesellschaften und Arbeitsgruppen wurden evidenzbasierte Empfehlungen für den Einsatz von Screening-Fragebögen und diagnostischen Tests bei Patienten mit neuropathischen Schmerzen entwickelt. Die systematische Literatursuche und Metaanalyse erbrachte folgende Ergebnisse: Von den Screening-Fragebögen erhielten Douleur Neuropathique en 4 Questions (DN4), I‑DN4 (Patientenversion DN4) und das Leeds Assessment of Neuropathic Symptoms and Signs (LANSS) eine starke Empfehlung, und S‑LANSS (Patientenversion LANSS) und painDETECT schwache Empfehlungen für ihre Verwendung im Diagnosepfad für Patienten mit möglichem neuropathischem Schmerz. Es resultierte eine starke Empfehlung für die Verwendung einer Hautbiopsie und eine schwache Empfehlung für die quantitative sensorische Testung und nozizeptiv evozierte Potenziale. Der Stellenwert der konfokalen kornealen Mikroskopie ist noch offen. Funktionelle Bildgebung und periphere Nervenblockaden sind hilfreich bei der Aufklärung der Pathophysiologie, die aktuelle Literatur unterstützt ihre Verwendung zur Diagnose von neuropathischen Schmerzen jedoch nicht. In ausgewählten Fällen kann eine genetische Untersuchung in spezialisierten Zentren in Betracht gezogen werden.

Abstract

In this joint guideline of the scientific societies and working groups mentioned in the title, evidence-based recommendations for the use of screening questionnaires and diagnostic tests in patients with neuropathic pain were developed. The systematic literature search and meta-analysis yielded the following results: Of the screening questionnaires, Douleur Neuropathique en 4 Questions (DN4), I‑DN4 (self-administered DN4), and Leeds Assessment of Neuropathic Symptoms and Signs (LANSS) received a strong recommendation, while S‑LANSS (self-administered LANSS) and PainDETECT received weak recommendations for their use in the diagnostic workup of patients with possible neuropathic pain. There was a strong recommendation for the use of skin biopsy and a weak recommendation for quantitative sensory testing and nociceptive evoked potentials. The role of confocal corneal microscopy is still unclear. Functional imaging and peripheral nerve blocks are helpful in elucidating the pathophysiology, but current literature does not support their use in diagnosing neuropathic pain. In selected cases, genetic testing in specialized centers may be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Truini A, Aleksovska K, Anderson CC, Attal N, Baron R, Bennett DL, Bouhassira D, Cruccu G, Eisenberg E, Enax-Krumova E, Davis KD, Di Stefano G, Finnerup NB, Garcia-Larrea L, Hanafi I, Haroutounian S, Karlsson P, Rakusa M, Rice ASC, Sachau J, Smith BH, Sommer C, Tölle T, Valls-Solé J, Veluchamy A (2023) Joint European Academy of Neurology-European Pain Federation-Neuropathic Pain Special Interest Group of the International Association for the Study of Pain guidelines on neuropathic pain assessment. Eur J Neurol 30:2177–2196

    Article  PubMed  Google Scholar 

  2. Attal N, Bouhassira D, Baron R (2018) Diagnosis and assessment of neuropathic pain through questionnaires. Lancet Neurol 17:456–466

    Article  PubMed  Google Scholar 

  3. Finnerup NB, Haroutounian S, Kamerman P, Baron R, Bennett DLH, Bouhassira D, Cruccu G, Freeman R, Hansson P, Nurmikko T, Raja SN, Rice ASC, Serra J, Smith BH, Treede RD, Jensen TS (2016) Neuropathic pain: an updated grading system for research and clinical practice. Pain 157:1599–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rolke R, Baron R, Maier C, Tölle TR, Treede DR, Beyer A, Binder A, Birbaumer N, Birklein F, Bötefür IC, Braune S, Flor H, Huge V, Klug R, Landwehrmeyer GB, Magerl W, Maihöfner C, Rolko C, Schaub C, Scherens A, Sprenger T, Valet M, Wasserka B (2006) Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): standardized protocol and reference values. Pain 123:231–243

    Article  CAS  PubMed  Google Scholar 

  5. Tham SW, Palermo TM, Holley AL, Zhou C, Stubhaug A, Furberg AS, Nielsen CS (2016) A population-based study of quantitative sensory testing in adolescents with and without chronic pain. Pain 157:2807–2815

    Article  PubMed  Google Scholar 

  6. Magerl W, Krumova EK, Baron R, Tolle T, Treede RD, Maier C (2010) Reference data for quantitative sensory testing (QST): refined stratification for age and a novel method for statistical comparison of group data. Pain 151:598–605

    Article  PubMed  Google Scholar 

  7. Blankenburg M, Boekens H, Hechler T, Maier C, Krumova E, Scherens A, Magerl W, Aksu F, Zernikow B (2010) Reference values for quantitative sensory testing in children and adolescents: developmental and gender differences of somatosensory perception. Pain 149:76–88

    Article  CAS  PubMed  Google Scholar 

  8. Pfau DB, Krumova EK, Treede RD, Baron R, Toelle T, Birklein F, Eich W, Geber C, Gerhardt A, Weiss T, Magerl W, Maier C (2014) Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): reference data for the trunk and application in patients with chronic postherpetic neuralgia. Pain 155:1002–1015

    Article  PubMed  Google Scholar 

  9. Baron R, Maier C, Attal N, Binder A, Bouhassira D, Cruccu G, Finnerup NB, Haanpää M, Hansson P, Hüllemann P, Jensen TS, Freynhagen R, Kennedy JD, Magerl W, Mainka T, Reimer M, Rice ASC, Segerdahl M, Serra J, Sindrup S, Sommer C, Tölle T, Vollert J, Treede RD (2017) Peripheral neuropathic pain: a mechanism-related organizing principle based on sensory profiles. Pain 158:261–272

    Article  PubMed  Google Scholar 

  10. Garcia-Larrea L, Hagiwara K (2019) Electrophysiology in diagnosis and management of neuropathic pain. Rev Neurol 175:26–37

    Article  CAS  PubMed  Google Scholar 

  11. Serra J, Duan WR, Locke C, Sola R, Liu W, Nothaft W (2015) Effects of a T-type calcium channel blocker, ABT-639, on spontaneous activity in C‑nociceptors in patients with painful diabetic neuropathy: a randomized controlled trial. Pain 156:2175–2183

    Article  CAS  PubMed  Google Scholar 

  12. Novak V, Freimer ML, Kissel JT, Sahenk Z, Periquet IM, Nash SM, Collins MP, Mendell JR (2001) Autonomic impairment in painful neuropathy. Neurology 56:861–868

    Article  CAS  PubMed  Google Scholar 

  13. Lefaucheur JP (2019) Clinical neurophysiology of pain. Handb Clin Neurol 161:121–148

    Article  PubMed  Google Scholar 

  14. Üçeyler N, Kahn AK, Kramer D, Zeller D, Casanova-Molla J, Wanner C, Weidemann F, Katsarava Z, Sommer C (2013) Impaired small fiber conduction in patients with Fabry disease: a neurophysiological case-control study. BMC Neurol 13:47

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hagiwara K, Perchet C, Frot M, Bastuji H, Garcia-Larrea L (2018) Insular-limbic dissociation to intra-epidermal electrical Aδ activation: A comparative study with thermo-nociceptive laser stimulation. Eur J Neurosci 48:3186–3198

    Article  PubMed  Google Scholar 

  16. Bendtsen L, Zakrzewska JM, Abbott J, Braschinsky M, Di Stefano G, Donnet A, Eide PK, Leal PRL, Maarbjerg S, May A, Nurmikko T, Obermann M, Jensen TS, Cruccu G (2019) European Academy of Neurology guideline on trigeminal neuralgia. Eur J Neurol 26:831–849

    Article  CAS  PubMed  Google Scholar 

  17. Cruccu G, Pennisi EM, Antonini G, Biasiotta A, di Stefano G, La Cesa S, Leone C, Raffa S, Sommer C, Truini A (2014) Trigeminal isolated sensory neuropathy (TISN) and FOSMN syndrome: despite a dissimilar disease course do they share common pathophysiological mechanisms? BMC Neurol 14:248

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dalsgaard CJ, Rydh M, Haegerstrand A (1989) Cutaneous innervation in man visualized with protein gene product 9.5 (PGP 9.5) antibodies. Histochem Cell Biol 92:385–390

    CAS  Google Scholar 

  19. Lauria G, Hsieh ST, Johansson O, Kennedy WR, Leger JM, Mellgren SI, Nolano M, Merkies IS, Polydefkis M, Smith AG, Sommer C, Valls-Solé J (2010) European Federation of Neurological Societies/Peripheral Nerve Society Guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society. Eur J Neurol 17:903–912 (e944–909)

    Article  CAS  PubMed  Google Scholar 

  20. Provitera V, Gibbons CH, Wendelschafer-Crabb G, Donadio V, Vitale DF, Stancanelli A, Caporaso G, Liguori R, Wang N, Santoro L, Kennedy WR, Nolano M (2016) A multi-center, multinational age- and gender-adjusted normative dataset for immunofluorescent intraepidermal nerve fiber density at the distal leg. Eur J Neurol 23:333–338

    Article  CAS  PubMed  Google Scholar 

  21. Egenolf N, Zu Altenschildesche CM, Kreß L, Eggermann K, Namer B, Gross F, Klitsch A, Malzacher T, Kampik D, Malik RA, Kurth I, Sommer C, Üçeyler N (2021) Diagnosing small fiber neuropathy in clinical practice: a deep phenotyping study. Ther Adv Neurol Disord 14:17562864211004318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Karlsson P, Gylfadottir SS, Kristensen AG, Ramirez JD, Cruz P, Le N, Shillo PR, Tesfaye S, Rice ASC, Tankisi H, Finnerup NB, Nyengaard JR, Jensen TS, Bennett DLH, Themistocleous AC (2021) Axonal swellings are related to type 2 diabetes, but not to distal diabetic sensorimotor polyneuropathy. Diabetologia 64:923–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Karlsson P, Provitera V, Caporaso G, Stancanelli A, Saltalamacchia AM, Borreca I, Manganelli F, Santoro L, Jensen TS, Nolano M (2021) Increased peptidergic fibers as a potential cutaneous marker of pain in diabetic small fiber neuropathy. Pain 162:778–786

    Article  CAS  PubMed  Google Scholar 

  24. Gylfadottir SS, Itani M, Kristensen AG, Tankisi H, Jensen TS, Sindrup SH, Bennett DLH, Nyengaard JR, Finnerup NB, Karlsson P (2021) Analysis of Macrophages and Peptidergic Fibers in the Skin of Patients With Painful Diabetic Polyneuropathy. Neurol Neuroimmunol Neuroinflamm 11;9:e1111.

  25. Fritz J, Dellon AL, Williams EH, Rosson GD, Belzberg AJ, Eckhauser FE (2017) Diagnostic Accuracy of Selective 3‑T MR Neurography-guided Retroperitoneal Genitofemoral Nerve Blocks for the Diagnosis of Genitofemoral Neuralgia. Radiology 285:176–185

    Article  PubMed  Google Scholar 

  26. Schutz H, Lougheed WM, Wortzman G, Awerbuck BG (1973) Intervertebral nerve-root in the investigation of chronic lumbar disc disease. Can J Surg 16:217–221

    CAS  PubMed  Google Scholar 

  27. North RB, Kidd DH, Zahurak M, Piantadosi S (1996) Specificity of diagnostic nerve blocks: a prospective, randomized study of sciatica due to lumbosacral spine disease. Pain 65:77–85

    Article  PubMed  Google Scholar 

  28. Anderberg L, Annertz M, Rydholm U, Brandt L, Saveland H (2006) Selective diagnostic nerve root block for the evaluation of radicular pain in the multilevel degenerated cervical spine. Eur Spine J 15:794–801

    Article  PubMed  Google Scholar 

  29. Yeom JS, Lee JW, Park KW, Chang BS, Lee CK, Buchowski JM, Riew KD (2008) Value of diagnostic lumbar selective nerve root block: a prospective controlled study. AJNR Am J Neuroradiol 29:1017–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Beynon R, Elwenspoek MMC, Sheppard A, Higgins JN, Kolias AG, Laing RJ, Whiting P, Hollingworth W (2019) The utility of diagnostic selective nerve root blocks in the management of patients with lumbar radiculopathy: a systematic review. BMJ Open 9:e25790

    Article  PubMed  PubMed Central  Google Scholar 

  31. Malessy MJA, de Boer R, Munoz Romero I, Eekhof JLA, van Zwet EW, Kliot M, Dahan A, Pondaag W (2018) Predictive value of a diagnostic block in focal nerve injury with neuropathic pain when surgery is considered. PLoS ONE 13:e203345

    Article  PubMed  PubMed Central  Google Scholar 

  32. Peyron R, Garcia-Larrea L, Deiber MP, Cinotti L, Convers P, Sindou M, Mauguiere F, Laurent B (1995) Electrical stimulation of precentral cortical area in the treatment of central pain: electrophysiological and PET study. Pain 62:275–286

    Article  CAS  PubMed  Google Scholar 

  33. Magnin M, Morel A, Jeanmonod D (2005) Toward a unified theory of positive symptoms. Neurophysiol Clin 35:154–161

    Article  CAS  PubMed  Google Scholar 

  34. Gustin SM, Wrigley PJ, Youssef AM, McIndoe L, Wilcox SL, Rae CD, Edden RAE, Siddall PJ, Henderson LA (2014) Thalamic activity and biochemical changes in individuals with neuropathic pain after spinal cord injury. Pain 155:1027–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Garcia-Larrea L, Maarrawi J, Peyron R, Costes N, Mertens P, Magnin M, Laurent B (2006) On the relation between sensory deafferentation, pain and thalamic activity in Wallenberg’s syndrome: a PET-scan study before and after motor cortex stimulation. Eur J Pain 10:677–688

    Article  PubMed  Google Scholar 

  36. Chao CC, Tseng MT, Lin YH, Hsieh PC, Lin CJ, Huang SL, Hsieh ST, Chiang MC (2021) Brain imaging signature of neuropathic pain phenotypes in small-fiber neuropathy: altered thalamic connectome and its associations with skin nerve degeneration. Pain 162:1387–1399

    Article  CAS  PubMed  Google Scholar 

  37. Garcia-Larrea L, Peyron R (2013) Pain matrices and neuropathic pain matrices: a review. Pain 154(Suppl 1):S29–S43

    Article  PubMed  Google Scholar 

  38. Casey KL, Morrow TJ, Lorenz J, Minoshima S (2001) Temporal and spatial dynamics of human forebrain activity during heat pain: analysis by positron emission tomography. J Neurophysiol 85:951–959

    Article  CAS  PubMed  Google Scholar 

  39. Peyron R, Faillenot I, Pomares FB, Le Bars D, Garcia-Larrea L, Laurent B (2013) Mechanical allodynia in neuropathic pain. Where are the brain representations located? A positron emission tomography (PET) study. Eur J Pain 17:1327–1337

    Article  CAS  PubMed  Google Scholar 

  40. Huynh V, Rosner J, Curt A, Kollias S, Hubli M, Michels L (2019) Disentangling the Effects of Spinal Cord Injury and Related Neuropathic Pain on Supraspinal Neuroplasticity: A Systematic Review on Neuroimaging. Front Neurol 10:1413

    Article  PubMed  Google Scholar 

  41. Perkins BA, Lovblom LE, Bril V, Scarr D, Ostrovski I, Orszag A, Edwards K, Pritchard N, Russell A, Dehghani C, Pacaud D, Romanchuk K, Mah JK, Jeziorska M, Marshall A, Shtein RM, Pop-Busui R, Lentz SI, Boulton AJM, Tavakoli M, Efron N, Malik RA (2018) Corneal confocal microscopy for identification of diabetic sensorimotor polyneuropathy: a pooled multinational consortium study. Diabetologia 61:1856–1861

    Article  PubMed  PubMed Central  Google Scholar 

  42. Brines M, Culver DA, Ferdousi M, Tannemaat MR, van Velzen M, Dahan A, Malik RA (2018) Corneal nerve fiber size adds utility to the diagnosis and assessment of therapeutic response in patients with small fiber neuropathy. Sci Rep 8:4734

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tavakoli M, Mitu-Pretorian M, Petropoulos IN, Fadavi H, Asghar O, Alam U, Ponirakis G, Jeziorska M, Marshall A, Efron N, Boulton AJ, Augustine T, Malik RA (2013) Corneal confocal microscopy detects early nerve regeneration in diabetic neuropathy after simultaneous pancreas and kidney transplantation. Diabetes 62:254–260

    Article  CAS  PubMed  Google Scholar 

  44. Dahan A, Dunne A, Swartjes M, Proto PL, Heij L, Vogels O, van Velzen M, Sarton E, Niesters M, Tannemaat MR, Cerami A, Brines M (2013) ARA 290 improves symptoms in patients with sarcoidosis-associated small nerve fiber loss and increases corneal nerve fiber density. Mol Med 19:334–345

    Article  PubMed  PubMed Central  Google Scholar 

  45. Oudejans LC, Niesters M, Brines M, Dahan A, van Velzen M (2017) Quantification of small fiber pathology in patients with sarcoidosis and chronic pain using cornea confocal microscopy and skin biopsies. J Pain Res 10:2057–2065

    Article  PubMed  PubMed Central  Google Scholar 

  46. Cox JJ, Reimann F, Nicholas AK, Thornton G, Roberts E, Springell K, Karbani G, Jafri H, Mannan J, Raashid Y, Al-Gazali L, Hamamy H, Valente EM, Gorman S, Williams R, McHale DP, Wood JN, Gribble FM, Woods CG (2006) An SCN9A channelopathy causes congenital inability to experience pain. Nature 444:894–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bennett DL, Clark AJ, Huang J, Waxman SG, Dib-Hajj SD (2019) The Role of Voltage-Gated Sodium Channels in Pain Signaling. Physiol Rev 99:1079–1151

    Article  CAS  PubMed  Google Scholar 

  48. Momi SK, Fabiane SM, Lachance G, Livshits G, Williams FMK (2015) Neuropathic pain as part of chronic widespread pain: environmental and genetic influences. Pain 156:2100–2106

    Article  PubMed  PubMed Central  Google Scholar 

  49. Veluchamy A, Hébert HL, Meng W, Palmer CNA, Smith BH (2018) Systematic review and meta-analysis of genetic risk factors for neuropathic pain. Pain 159:825–848

    Article  CAS  PubMed  Google Scholar 

  50. Chung HY, Song EY, Yoon JA, Suh DH, Lee SC, Kim YC, Park MH (2016) Association of human leukocyte antigen with postherpetic neuralgia in Koreans. Apmis 124:865–871

    Article  CAS  PubMed  Google Scholar 

  51. Cheng KI, Lin SR, Chang LL, Wang JY, Lai CS (2010) Association of the functional A118G polymorphism of OPRM1 in diabetic patients with foot ulcer pain. J Diabetes Complications 24:102–108

    Article  PubMed  Google Scholar 

  52. Meng W, Deshmukh HA, van Zuydam NR, Liu Y, Donnelly LA, Zhou K, Morris AD, Colhoun HM, Palmer CN, Smith BH (2015) A genome-wide association study suggests an association of Chr8p21.3 (GFRA2) with diabetic neuropathic pain. Eur J Pain 19:392–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Warner SC, van Meurs JB, Schiphof D, Bierma-Zeinstra SM, Hofman A, Uitterlinden AG, Richardson H, Jenkins W, Doherty M, Valdes AM (2017) Genome-wide association scan of neuropathic pain symptoms post total joint replacement highlights a variant in the protein-kinase C gene. Eur J Hum Genet 25:446–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lemmelä S, Solovieva S, Shiri R, Benner C, Heliövaara M, Kettunen J, Anttila V, Ripatti S, Perola M, Seppälä I, Juonala M, Kähönen M, Salomaa V, Viikari J, Raitakari OT, Lehtimäki T, Palotie A, Viikari-Juntura E, Husgafvel-Pursiainen K (2016) Genome-Wide Meta-Analysis of Sciatica in Finnish Population. PLoS ONE 11:e163877

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wiberg A, Ng M, Schmid AB, Smillie RW, Baskozos G, Holmes MV, Künnapuu K, Mägi R, Bennett DL, Furniss D (2019) A genome-wide association analysis identifies 16 novel susceptibility loci for carpal tunnel syndrome. Nat Commun 10:1030

    Article  PubMed  PubMed Central  Google Scholar 

  56. Reyes-Gibby CC, Wang J, Yeung SJ, Chaftari P, Yu RK, Hanna EY, Shete S (2018) Genome-wide association study identifies genes associated with neuropathy in patients with head and neck cancer. Sci Rep 8:8789

    Article  PubMed  PubMed Central  Google Scholar 

  57. Baron R, Dickenson AH, Calvo M, Dib-Hajj SD, Bennett DL (2023) Maximizing treatment efficacy through patient stratification in neuropathic pain trials. Nat Rev Neurol 19:53–64

    Article  CAS  PubMed  Google Scholar 

  58. Calvo M, Davies AJ, Hébert HL, Weir GA, Chesler EJ, Finnerup NB, Levitt RC, Smith BH, Neely GG, Costigan M, Bennett DL (2019) The Genetics of Neuropathic Pain from Model Organisms to Clinical Application. Neuron 104:637–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Smith BH, Hébert HL, Veluchamy A (2020) Neuropathic pain in the community: prevalence, impact, and risk factors. Pain 161(Suppl 1):S127–S137

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Sommer.

Ethics declarations

Interessenkonflikt

C. Sommer erhielt Honorare für Vorträge und Beratungsleistungen von Algiax Bayer, CSL Behring, Grifols, Kedrion, LFB, Nevro, Omega, Pfizer, Takeda, Teva. Sie erhält Forschungsförderung von der DFG (SFB 1158, KFO 5001 ResolvePain und GRK2660) Approach&Avoidance. R. Baron erhielt Förderungen für EU-Projekte: „Europain“ (115007). DOLORisk (633491), IMI Paincare (777500) sowie vom Bundesministerium für Bildung und Forschung (BMBF) für das Verbundprojekt NoChro (13GW0338C) und das Deutsche Forschungsnetzwerk Neuropathischer Schmerz (01EM0903), sowie Förderungen von Pfizer Pharma GmbH, Sanofi Genzyme GmbH, Grünenthal GmbH, Mundipharma Research GmbH und Co. KG., Alnylam Pharmaceuticals Inc., Zambon GmbH, Sanofi Aventis GmbH, Vortragshonorare von Pfizer Pharma GmbH, Sanofi Genzyme GmbH, Grünenthal GmbH, Mundipharma, Lilly GmbH, Desitin Arzneimittel GmbH, Teva GmbH, Bayer AG, MSD GmbH, Seqirus Australia Pty. Ltd, Novartis Pharma GmbH, TAD Pharma GmbH, Grünenthal SA Portugal, Grünenthal Pharma AG Schweiz, Grünenthal B.V. Niederlande, Evapharma, Takeda Pharmaceuticals International AG Schweiz, Ology Medical Education Netherlands, Ever Pharma GmbH, Amicus Therapeutics GmbH, Novo Nordisk Pharma GmbH, Chiesi GmbH, Stada Mena DWC LLC Dubai, Hexal AG, Viatris, AstraZeneca GmbH, Sandoz und finanzielle Aufwandsentschädigungen für Beratertätigkeiten von Pfizer Pharma GmbH, Sanofi Genzyme GmbH, Grünenthal GmbH, Lilly, Novartis Pharma GmbH, Bristol-Myers Squibb, Biogen, AstraZeneca GmbH, Daiichi Sankyo, Glenmark Pharmaceuticals S.A., Seqirus Australia Pty. Ltd, Teva Pharmaceuticals Europe Niederlande, Teva GmbH, Genentech, Mundipharma International Ltd. UK, Galapagos NV, Kyowa Kirin GmbH, Vertex Pharmaceuticals Inc., Biotest AG, Celgene GmbH, Desitin Arzneimittel GmbH, Regeneron Pharmaceuticals Inc. USA, Theranexus DSV CEA Frankreich, Abbott Products Operations AG Schweiz, Bayer AG, Grünenthal Pharma AG Schweiz, Akcea Therapeutics Germany GmbH, Asahi Kasei Pharma Corporation, AbbVie Deutschland GmbH & Co. KG, Air Liquide Sante International Frankreich, Alnylam Germany GmbH, Lateral Pharma Pty Ltd, Hexal AG, Angelini, Janssen, SIMR Biotech Pty Ltd Australien, Confo Therapeutics N. V. Belgium, Merz Pharmaceuticals GmbH, Neumentum Inc., F. Hoffmann-La Roche Ltd. Switzerland, AlgoTherapeutix SAS France, Nanobiotix SA France, AmacaThera Inc. Canada, Heat2Move, Resano GmbH, Esteve Pharmaceuticals SA. J. Sachau erhielt finanzielle Unterstützung für Kongressreisen von Alnylam Pharmaceuticals Inc. und Pfizer, finanzielle Aufwandsentschädigungen für Beratertätigkeiten von Pfizer Pharma GmbH und Vortragshonorare von Grünenthal GmbH und Alnylam Germany GmbH. E. Enax-Krumova hat eine von der Deutschen Gesetzlichen Unfallversicherung (DGUV) für die Dauer von 6 Jahren (2020–2026) geförderte Stiftungsprofessur inne, erhielt zudem Zuwendungen in Form von Forschungsförderungen von der Georgius Agricola Stiftung Ruhr und DLR e. V., Vergütung für Teilnahme an einer klinischen Studie von Apurano (an die Klinik) sowie Honorare für Vorträge und Beratungsleistungen von Omega Pharma und Novartis (persönlich). Ö.S. Özgül erhielt eine intramurale Förderung durch die Medizinische Fakultät der Ruhr-Universität Bochum (FoRUM Ref. Nr. K120-18). A. Papagianni gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

Dieser Beitrag fasst die Inhalte der englischsprachigen Leitlinie [1] zusammen.

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sommer, C., Baron, R., Sachau, J. et al. Die EAN-NeuPSIG-Leitlinie zur Diagnostik bei neuropathischen Schmerzen – eine Kurzfassung. Schmerz (2024). https://doi.org/10.1007/s00482-024-00806-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00482-024-00806-0

Schlüsselwörter

Keywords

Navigation