Skip to main content
Log in

Analysis of spherical monofractal and multifractal random fields

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

The Rényi function plays an important role in the analysis of multifractal random fields. For random fields on the sphere, there are three models in the literature where the Rényi function is known explicitly. The theoretical part of the article presents multifractal random fields on the sphere and develops specific models where the Rényi function can be computed explicitly. For all considered models explicit expressions of their multifractal spectrum are obtained. Properties of the models and dependencies of their characteristics on parameters are investigated. Then these results are applied to the Cosmic Microwave Background Radiation data collected from the Planck mission. The main statistical model used to describe these data in the literature is isotropic Gaussian fields. We present numerical multifractality studies and methodology based on simulating random fields, computing the Rényi function and the multifractal spectrum for different scenarios and actual CMB data. The obtained results can also find numerous potential applications for other geoscience, environmental and directional data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

CMB data from the mission Planck which were used for the analysis purposes are freely available in the NASA/IPAC Infrared Science Archive, see NASA (2020).

Code availability

All numerical studies were conducted by using Maple 2019.0 and R 3.6.3 software, in particular, the R packages ‘rcosmo’ (Fryer et al. 2019, Fryer et al. 2020) and ‘RandomFields’ (Schlather et al. 2019). A reproducible version of the code in this paper is available in the folder “Research materials” from the website https://sites.google.com/site/olenkoandriy/.

References

  • Abramowitz M, Stegun IA (1948) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York

    Google Scholar 

  • Angulo J, Anh V, Ruiz-Medina M (2008) Multifractality in space-time statistical models. Stoch Environ Res Risk Assess 22:81–86

    Article  Google Scholar 

  • Angulo J, Esquivel FJ (2015) Multifractal dimensional dependence assessment based on Tsallis mutual information. Entropy 17:5382–5401

    Article  Google Scholar 

  • Anh V, Leonenko N, Olenko A (2015) On the rate of convergence to Rosenblatt-type distribution. J Math Anal Appl 425(1):111–132

    Article  Google Scholar 

  • Anh V, Leonenko N, Olenko A, Vaskovych V (2019) On rate of convergence in non-central limit theorems. Bernoulli 25(4A):2920–2948

    Article  Google Scholar 

  • Anh V, Broadbridge P, Olenko A, Wang YG (2018) On approximation for fractional stochastic partial differential equations on the sphere. Stoch Environ Res Risk Assess 32(9):2585–2603

    Article  Google Scholar 

  • Anh V, Leonenko N, Shieh NR (2008) Multifractality of products of geometric Ornstein–Uhlenbeck-type processes. Adv Appl Probab 40(4):1129–1156

    Article  Google Scholar 

  • Broadbridge P, Kolesnik AD, Leonenko N, Olenko A (2019) Random spherical hyperbolic diffusion. J Stat Phys 177(5):889–916

    Article  CAS  Google Scholar 

  • Broadbridge P, Kolesnik AD, Leonenko N, Olenko A, Omari D (2020) Spherically restricted random hyperbolic diffusion. Entropy 22(2):217

    Article  Google Scholar 

  • Christakos G (2017) Spatiotemporal Random Fields: Theory and Applications. Elsevier, Netherlands

    Google Scholar 

  • Denisov D, Leonenko N (2016) Limit theorems for multifractal products of geometric stationary processes. Bernoulli 22(4):2579–2608

    Article  Google Scholar 

  • Emery X, Porcu E (2019) Simulating isotropic vector-valued Gaussian random fields on the sphere through finite harmonics approximations. Stoch Environ Res Risk Assess 33:1659–1667

    Article  Google Scholar 

  • Emery X, Porcu E, Bissiri PG (2019) A semiparametric class of axially symmetric random fields on the sphere. Stoch Environ Res Risk Assess 33:1863–1874

    Article  Google Scholar 

  • Falconer KJ (1994) The multifractal spectrum of statistically self-similar measures. J Theor Probab 7(3):681–702

    Article  Google Scholar 

  • Fryer D, Li M, Olenko A (2020) Rcosmo: R package for analysis of spherical. HEALPix and cosmological data. R Journal 12(1):206–225

    Article  Google Scholar 

  • Fryer, D., Olenko, A.: Spherical data handling and analysis with R package rcosmo. In: H. Nguyen (ed.) Statistics and Data Science. RSSDS 2019, pp. 211–225. Springer, Singapore (2019)

  • Fryer, D., Olenko, A., Li, M., Wang, Y.G.: rcosmo: Cosmic Microwave Background Data Analysis (2019). https://CRAN.R-project.org/package=rcosmo. R package version 1.1.0

  • Gneiting T (2013) Strictly and non-strictly positive definite functions on spheres. Bernoulli 19(4):1327–1349

    Article  Google Scholar 

  • Grahovac D, Leonenko N (2014) Detecting multifractal stochastic processes under heavy-tailed effects. Chaos, Solitons Fractals 65:78–89

    Article  Google Scholar 

  • Harte D (2001) Multifractals: Theory and Applications. Chapman and Hall/CRC, Boca Raton

    Book  Google Scholar 

  • Hill JC (2018) Foreground biases on primordial non-Gaussianity measurements from the CMB temperature bispectrum: Implications for Planck and beyond. Phys Rev D 98(8):083542

    Article  Google Scholar 

  • Jaffard S (1999) The multifractal nature of Lévy processes. Probab Theory Relat Fields 114(2):207–227

    Article  Google Scholar 

  • Janson S (1997) Gaussian Hilbert Spaces. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Jeong J, Jun M, Genton MG (2017) Spherical process models for global spatial statistics. Statist Sci 32(4):501–513

    Article  Google Scholar 

  • Kahane JP (1987) Positive martingales and random measures. Chinese Ann Math B 8(1):1–12

    Google Scholar 

  • Kevork, A., Graeme, A., Peter, A., Zeeshan, A., Steven W., A., David, A., et al.: CMB-S4 Science Case, Reference Design, and Project Plan (2019). https://arxiv.org/abs/1907.04473

  • Kogut A, Banday A, Bennett C, Górski K, Hinshaw G, Smoot G et al (1996) Tests for non-Gaussian statistics in the DMR four-year sky maps. Astrophys J Lett 464(1):L29–L33

    Article  Google Scholar 

  • Lang A, Schwab C (2015) Isotropic Gaussian random fields on the sphere: Regularity, fast simulation and stochastic partial differential equations. Ann Appl Probab 25(6):3047–3094

    Article  Google Scholar 

  • Leonenko N (1999) Limit Theorems for Random Fields with Singular Spectrum. Springer, Dordrecht

    Book  Google Scholar 

  • Leonenko N, Shieh NR (2013) Rényi function for multifractal random fields. Fractals 21(2):1350009

    Article  Google Scholar 

  • Loéve M (1977) Probability Theory. Springer, New York

    Google Scholar 

  • Malyarenko A (2012) Invariant Random Fields on Spaces with a Group Action. Springer-Verlag, Berlin

    Google Scholar 

  • Mannersalo P, Norros I, Riedi RH (2002) Multifractal products of stochastic processes: construction and some basic properties. Adv Appl Probab 34(4):888–903

    Article  Google Scholar 

  • Marinucci D (2004) Testing for non-Gaussianity on cosmic microwave background radiation: A review. Stat Sci 19(2):294–307

    Article  Google Scholar 

  • Marinucci D, Peccati G (2011) Random Fields on the Sphere: Representation, Limit Theorems and Cosmological Applications. Cambridge University Press, New York

    Book  Google Scholar 

  • Minkov M, Pinkwart M, Schupp P (2019) Entropy methods for CMB analysis of anisotropy and non-Gaussianity. Phys Rev D 99(10):103501

    Article  CAS  Google Scholar 

  • Molchan G (1996) Scaling exponents and multifractal dimensions for independent random cascades. Commun Math Phys 179(3):681–702

    Article  Google Scholar 

  • NASA/IPAC infrared science archive: https://irsa.ipac.caltech.edu/data/Planck/release_2/all-sky-maps/maps/component-maps/cmb/ (2019). Accessed 2 October 2020

  • Novikov D, Schmalzing J, Mukhanov V (2000) On non-gaussianity in the cosmic microwave background. Astron Astrophys 364(1)

  • Peccati G, Taqqu MS (2011) Wiener Chaos: Moments, Cumulants and Diagrams: A Survey with Computer Implementation. Springer-Verlag, Mailand

    Book  Google Scholar 

  • Planck and the cosmic microwave background: https://www.esa.int/Science_Exploration/Space_Science/Planck/Planck_and_the_cosmic_microwave_background (2020). Accessed 2 October 2020

  • Porcu E, Alegria A, Furrer R (2018) Modeling temporally evolving and spatially globally dependent data. Int Stat Rev 86(2):344–377

    Article  Google Scholar 

  • Riedi RH (2002) Multifractal processes. In: Doukhan P, Oppenheim G, Taqqu M (eds) Theory and Applications of Long-Range Dependence. Birkhäuser, Basel, pp 625–716

    Google Scholar 

  • Schlather, M., Malinowski, A., Oesting, M., Boecker, D., Strokorb, K., Engelke, S., et al.: RandomFields: Simulation and Analysis of Random Fields (2019). https://cran.r-project.org/package=RandomFields. R package version 3.3.6

  • Starck JL, Aghanim N, Forni O (2004) Detection and discrimination of cosmological non-gaussian signatures by multi-scale methods. Astron Astrophys 416(1):9–17

    Article  Google Scholar 

  • The Cosmic Microwave Background: http://planck.cf.ac.uk/science/cmb (2020). Accessed 2 October 2020

Download references

Acknowledgements

This research was partially supported under the Australian Research Council’s Discovery Projects funding scheme (Project Number DP160101366). The authors are also grateful to the anonymous referees for their suggestions that helped to improve the style of the paper. We also would like to thank Professor P. Broadbridge for numerous discussions of CMB and underlying physics models.

Author information

Authors and Affiliations

Authors

Contributions

All the authors equally contributed to the paper.

Corresponding author

Correspondence to Andriy Olenko.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing interests for the results reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A Proofs

Appendix A Proofs

Proof

(Theorem 5.1) By Remark 4.1, from the weak convergence of the measures \(\mu _k\) to \(\mu \) and the assumption of exponential boundedness of the covariance function of the mother field, it follows that

$$\begin{aligned} E \mu ^q_k(B^3) \rightarrow E\mu ^q(B^3), \quad k \rightarrow \infty . \end{aligned}$$

By the Lyapunov’s inequality, see (Loéve 1977, p.162),

$$\begin{aligned} E \mu ^q_k(B^3) \le (E\mu ^2_k(B^3))^{q/2}, \, \text {for} \, q \in [1,2]. \end{aligned}$$

Therefore, to guarantee \(E\mu ^q(B^3)< +\infty , \, q \in [1,2],\) it is sufficient to provide such b and \(\sigma ^2_{\varLambda }\) that

$$\begin{aligned} \sup _{k\in {\mathbb {N}}} E\mu ^2_k(B^3) < +\infty . \end{aligned}$$

By (4), the non-negativity of \(\varLambda _{k}(y)\) and independence of \(\varLambda ^{(i)}\) it holds

$$\begin{aligned} E\mu ^2_k(B^3)= & {} E \int _{B^3} \int _{B^3} \varLambda _k(y)\varLambda _k(\tilde{y})d\tilde{y}dy\\= & {} \int _{B^3} \int _{B^3} E[\varLambda _k(y)\varLambda _k(\tilde{y})]d\tilde{y}dy\\= & {} \int _{B^3} \int _{B^3} E \prod ^k_{i=0} \varLambda ^{(i)}(yb^i) \varLambda ^{(i)}(\tilde{y}b^i) d\tilde{y}dy\\= & {} \int _{B^3} \int _{B^3} \prod ^k_{i=0} E\varLambda ^{(i)}(yb^i) \varLambda ^{(i)}(\tilde{y}b^i) d\tilde{y}dy\\= & {} \int _{B^3} \int _{B^3} \prod ^k_{i=0} \biggl (E(\varLambda ^{(i)}(yb^{i})-1)(\varLambda ^{(i)}(\tilde{y}b^i)-1)\\&+E \varLambda ^{(i)}(yb^i) + E \varLambda ^{(i)}(\tilde{y}b^i) -1 \biggl ) d\tilde{y}dy\\= & {} \int _{B^3} \int _{B^3} \prod ^k_{i=0}(Cov(\varLambda (yb^i), \varLambda (\tilde{y}b^i))+1)d\tilde{y}dy\\= & {} \int _{B^3} \int _{B^3} \prod ^k_{i=0}\left( 1+ \sigma ^2_{\varLambda }\rho _{\varLambda }(\Vert y- \tilde{y}\Vert b^i)\right) d\tilde{y}dy\\\le & {} \int _{B^3} \int _{B^3} \prod ^k_{i=0}(1+ \sigma ^2_{\varLambda }C e^{-\gamma \Vert y- \tilde{y}\Vert b^i})d\tilde{y}dy\\\le & {} \int _{B^3} \int _{B^3} \prod ^{\infty }_{i=0}(1+ \sigma ^2_{\varLambda }C e^{-\gamma \Vert y- \tilde{y}\Vert b^i})d\tilde{y}dy. \end{aligned}$$

From the inequality \(1+a \le e^a\), it follows that

$$\begin{aligned} E\mu ^2_k(B^3) \le \int _{B^3} \int _{B^3} \prod ^{\infty }_{i=0} e^{\sigma ^2_{\varLambda }C e^{-\gamma \Vert y- \tilde{y}\Vert b^i}}d\tilde{y}dy. \end{aligned}$$

Introducing the new variables \(z=y\), \(\tilde{z} = y-\tilde{y},\) one obtains

$$\begin{aligned} E\mu ^2_k(B^3) \le \int _{B^3} dz\int _{B^3-B^3} \prod ^{\infty }_{i=0} e^{\sigma ^2_{\varLambda }C e^{-\gamma \Vert \tilde{z}\Vert b^i}}d\tilde{z}, \end{aligned}$$

where \(B^3-B^3 = \{\tilde{z}: \tilde{z}=y-\tilde{y}, \, y, \, \tilde{y} \in B^3 \}.\)

Hence, by using the spherical change of variables,

$$\begin{aligned}&E\mu ^2_k(B^3) \le |B^3|\int ^{diam(B^3)}_{0} {r}^{2}\prod ^{\infty }_{i=0} e^{\sigma ^2_{\varLambda }C e^{-\gamma {r} b^i}}dr\\&\quad = \frac{|B^3|}{\gamma ^{3}}\int ^{\gamma diam(B^3)}_{0} {r}^{2}\prod ^{\infty }_{i=0} e^{\sigma ^2_{\varLambda }C e^{-r b^i}}d\tau . \end{aligned}$$

As the exponent \(e^{\sigma ^2_{\varLambda }C e^{-r b^i}}\) is a decreasing function of r, selecting \(n(r) = \max (0, -[\log _b(r)]),\) \(r>0,\) we obtain

$$\begin{aligned}&\prod ^{\infty }_{i=0} e^{\sigma ^2_{\varLambda }C e^{-r b^i}} \le \prod ^{n(r)-1}_{i=0} e^{\sigma ^2_{\varLambda }C e^{-r b^i}}\prod ^{\infty }_{i=n(r)} e^{\sigma ^2_{\varLambda }C e^{-r b^i}}\\&\quad \le e^{\sigma ^2_{\varLambda }C n(r)}\prod ^{\infty }_{i=0} e^{\sigma ^2_{\varLambda }C e^{-r b^{i+n(r)}}} \le e^{\sigma ^2_{\varLambda }C n(r)}\prod ^{\infty }_{i=0} e^{\sigma ^2_{\varLambda }C e^{-b^i}}. \end{aligned}$$

Notice that

$$\begin{aligned}&\prod ^{\infty }_{i=0} e^{\sigma ^2_{\varLambda }C e^{-b^i}} = e^{\sigma ^2_{\varLambda }C \sum ^{\infty }_{i=0} e^{-b^i}} \le e^{\sigma ^2_{\varLambda }C \sum ^{\infty }_{i=0} e^{-(1+(b-1)^i)}}\\&\quad = e^{\frac{\sigma ^2_{\varLambda }C}{e}\sum ^{\infty }_{i=0} {e^{-(b-1)}}^i} = e^{{\frac{\sigma ^2_{\varLambda }C}{e}} {\frac{1}{1-e^{-(b-1)}}}} < +\infty . \end{aligned}$$

Therefore,

$$\begin{aligned} E\mu ^2_k(B^3)&\le {\frac{|B^3|}{\gamma ^{3}}}{e^{\frac{\sigma ^2_{\varLambda }C}{e(1-e^{-(b-1)})}}} \int ^{\gamma diam(B^3)}_{0} z^{2} e^{\sigma ^2_{\varLambda }C n(z)}dz \\&= {\frac{|B^3|}{\gamma ^{3}}}{e^{\frac{\sigma ^2_{\varLambda }C}{e(1-e^{-(b-1)})}}} \int ^{\gamma diam(B^3)}_{0} z^{2}\max \left( 1, \, z^{-\frac{\sigma ^2_{\varLambda }}{\ln {(b)}}}\right) dz. \end{aligned}$$

The integral is finite if \(2-\frac{\sigma ^2_{\varLambda }C}{\ln {(b)}} > -1,\)   i.e. \(b> e^{\frac{\sigma ^2_{\varLambda }C}{3}}\). \(\square \)

Proof

(Theorem 7.1) By the definition of Model 4 it follows that

$$\begin{aligned}&E \varLambda (x) = E(Y^2(x)) = \rho _Y(0) =1, \\&\sigma ^2_{\varLambda } = Var \varLambda (x) = E(Y^4(x))-1 =2,\\&Cov(\varLambda (x), \varLambda (y)) = E(Y^2(x)-1)(Y^2(y)-1) \\&\quad = 2\rho _{Y}^2(\Vert x-y \Vert ). \end{aligned}$$

To compute the covariance, we used the property

$$\begin{aligned} E(H_k(Y(x))H_l(Y(y))) = \delta _k^l k! \rho _{Y}^k(\Vert x-y \Vert ), \quad x,y \in {{\mathbb {R}}}^{3}, \end{aligned}$$
(24)

where \(H_k(u), \, k \ge 0, \, u \in {\mathbb {R}},\) are the Hermite polynomials, see Peccati and Taqqu (2011). For \(k=2\), the Hermite polynomial of order 2 is \(H_2(u) = u^2 -1.\)

Thus, Model 4 satisfies Conditions 1 and 2.

Note that the condition \(|\rho _{\varLambda }(r)| \le Ce^{-\gamma r}, \, r>0, \, \gamma >0,\) is equivalent to

$$\begin{aligned} |\rho _{Y}(r)| \le C^{'}e^{-\gamma ^{'}r}, \, r>0, \, \gamma ^{'}>0. \end{aligned}$$
(25)

So, if (25) is satisfied, then one can apply Theorems 4.1 and 4.2 and the Rényi function of the limit measure equals to

$$\begin{aligned} T(q) = q-1-\frac{1}{2}\log _b E Y^{2q}(x). \end{aligned}$$

Finally, noting that for \(p > -1\) and \(Z \sim N(\mu , \sigma ^2)\)

$$\begin{aligned} E |Z-\mu |^{p} = \sigma ^p \frac{2^{p/2}\varGamma (\frac{p+1}{2})}{\sqrt{\pi }} \end{aligned}$$
(26)

finalises the proof. \(\square \)

Proof

(Example 7.1) By Remark 5.1, it is enough to check that

$$\begin{aligned} \sup _{k \in N}E \mu _k^4(B^3)= & {} \sup _{k \in N}\int _{B^3}\int _{B^3}\int _{B^3}\int _{B^3} \prod _{i=0}^{k}E\left( \prod _{j=1}^4 Y^2 (y_j b^i)\right) \\&\times \prod _{j=1}^4 dy_j < +\infty . \end{aligned}$$

Notice, that by Wick’s theorem

$$\begin{aligned} E\left( \prod _{j=1}^4 Y^2(y_j b^i)\right) = \sum _{p \in P_4^2} \prod _{(j, \tilde{j}) \in p} Cov(Y(y_j b^i), Y(y_{\tilde{j}}b^i)), \end{aligned}$$
(27)

where the sum is over all parings p of \(\{1,1,2,2,3,3,4,4\},\) which are distinct ways of partitioning \(\{1,1,2,2,3,3,4,4\}\) into pairs (ij). The product in (27) is over all pairs contained in p, see Janson (1997).

Notice that for the pairing \(p^{*}=\{(1,1),(2,2),(3,3),(4,4)\}.\)

$$\begin{aligned} \prod _{(j, \tilde{j}) \in p^{*}}Cov(Y(y_j b^i), Y(y_{\tilde{j}}b^i)) = \prod _{j=1}^4 E Y^2(y_j b^i) = 1. \end{aligned}$$

In all other cases of pairing there is at least one pair \((j, \tilde{j})\) such that \(j \ne \tilde{j}\). Therefore, the expectation \(E(\prod _{j=1}^4 Y^2(y_j b^i))\) equals

$$\begin{aligned} 1+ \sum _{{\begin{array}{c} p \in P_4^2 \\ p \ne p^{*} \end{array}}}\prod _{(j, \tilde{j}) \in p}Cov(Y(y_j b^i), Y(y_{\tilde{j}}b^i)). \end{aligned}$$

As, \(1+a < e^a\), it can be estimated by

$$\begin{aligned} \exp \left( {\sum _{{\begin{array}{c} p \in P_4^2 \\ p \ne p^{*} \end{array}}}\prod _{(j, \tilde{j})\in p} Cov(Y(y_j b^i), Y(y_{\tilde{j}}b^i))}\right) . \end{aligned}$$

As at least for one pairing \((j, \tilde{j}) \in p \ne p^{*}\) it holds that \(j \ne \tilde{j},\) then one can use the upper bound

$$\begin{aligned} |Cov(Y(y_j b^i), Y(y_{\tilde{j}}b^i))| \le \sigma _Y^2 C e^{-\gamma \Vert y_j - y_{\tilde{j}}\Vert b^i}, \end{aligned}$$

and the approach from the proof of Theorem 5.1.

Namely,

$$\begin{aligned}&E\left( \prod _{j=1}^4 Y^2(y_j b^i)\right) \le e^{\sum _{p \in p_4^2}\prod _{(j, \tilde{j})\in p}\sigma _Y^2 C e^{-\gamma \Vert y_j - y_{\tilde{j}}\Vert b^i}}\\&\quad \le e^{{(\max (\sigma _{\varLambda }^2 C, 1))^4}{\sum _{1 \le j \le \tilde{j} \le 4} e^{-\gamma \Vert y_j - y_{\tilde{j}}\Vert b^i}}}. \end{aligned}$$

Hence,

$$\begin{aligned}&\sup _{k \in N}\int _{B^3}\int _{B^3}\int _{B^3}\int _{B^3} \prod _{i=0}^{k}E\left( \prod _{j=1}^4 Y^2 (y_j b^i)\right) \prod _{j=1}^4 dy_j \\&\quad \le \int _{B^3}\int _{B^3}\int _{B^3}\int _{B^3} \prod _{i=0}^{\infty }e^{{(\max (\sigma _{\varLambda }^2 C, 1))^4}{\sum _{1 \le j \le \tilde{j} \le 4} e^{-\gamma \Vert y_j - y_{\tilde{j}}\Vert b^i}}} \\&\quad \le \left( \int _{B^3}\int _{B^3}\int _{B^3}\int _{B^3} \prod _{i=0}^{\infty }e^{6{(\max (\sigma _{\varLambda }^2 C, 1))^4}{\sum _{1 \le j \le \tilde{j} \le 4} e^{-\gamma \Vert y_j - y_{\tilde{j}}\Vert b^i}}}\prod _{j=1}^4 dy_j\right) , \end{aligned}$$

where the last inequality follows from the generalized Hölder’s inequality

$$\begin{aligned} {\left\| \prod _{k=1}^{K}f_k\right\| }_{1} \le \prod _{k=1}^{K} {\Vert f_k \Vert }_{p_k}, \end{aligned}$$

with \(\sum _{k=1}^{K}{p_k}^{-1}=1\). In our case \(K=6\) is the number of different j and \(\tilde{j}\) satisfying \(1 \le j \le \tilde{j} \le 4.\)

Finally, similar to the proof of Theorem 5.1, from equation (18) we obtain the condition \(b > e^{{\frac{6 {(\max (\sigma _{\varLambda }C, 1))}^4}{3}}}.\) \(\square \)

Proof

(Theorem 7.2) It follows from (26) that

$$\begin{aligned} E \varLambda (x)= & {} E Y^{2k}(x) = \sigma ^{2k}{\frac{2^k \varGamma (k+\frac{1}{2})}{\sqrt{\pi }}} =1,\\ \sigma ^2_{\varLambda }= & {} Var \varLambda (x) = E(Y^{4k}) -1\\= & {} {\left( \frac{\sqrt{\pi }}{2^k \varGamma (k+\frac{1}{2})}\right) }^2 {\frac{2^{2k}\varGamma (2k+\frac{1}{2})}{\pi }}-1\\= & {} \frac{\sqrt{\pi }\varGamma (2k+ \frac{1}{2})}{{\varGamma }^2(k+\frac{1}{2})} - 1 < +\infty . \end{aligned}$$

To compute the covariance function we use (24) and the following Hermite expansion (Abramowitz and Stegun 1948, page 775)

$$\begin{aligned} z^{2k} = (2k)! \sum _{i=0}^{k} \frac{H_{2k-2i}(z)}{2^i i!(2k-2i)!}. \end{aligned}$$

Therefore,

$$\begin{aligned}&Cov(\varLambda (x), \varLambda (y)) = E(Y^{2k}(x)-1)(Y^{2k}(y)-1) \nonumber \\&\quad = \frac{\pi E(\tilde{Y}^{2k}(x)\tilde{Y}^{2k}(y))}{2^{2k}{\varGamma }^2(k+\frac{1}{2})}-1\nonumber \\&\quad = ((2k)!)^2\frac{\pi }{2^{2k}{\varGamma }^2(k+\frac{1}{2})}\sum _{i=0}^k \frac{E[H_{2k-2i}(\tilde{Y}(x))H_{2k-2i}(\tilde{Y}(y))]}{2^{2i}(i!)^2((2k-2i)!)^2}-1\nonumber \\&\quad = ((2k)!)^2\frac{\pi }{2^{2k}{\varGamma }^2(k+\frac{1}{2})}\sum _{i=0}^k \frac{{\tilde{\rho }}^{2k-2i}(\Vert x-y \Vert )}{2^{2i}(i!)^2(2k-2i)!}-1, \end{aligned}$$
(28)

where \(\tilde{Y}(x) = Y(x)/\left( \frac{\sqrt{\pi }}{2^k \varGamma (k+\frac{1}{2})}\right) ^{1/{2k}}\) is a zero-mean unit variance Gaussian HIRF with the covariance function

$$\begin{aligned} {\tilde{\rho }}(\Vert x-y \Vert ) = \left( \frac{2^k \varGamma (k+\frac{1}{2})}{\sqrt{\pi }}\right) ^{1/k}\rho _Y(\Vert x-y \Vert ). \end{aligned}$$

Notice, that for \(i=k\) in (28) by the Legendre duplication formula

$$\begin{aligned} \frac{((2k)!)^2 \pi }{2^{2k} {\varGamma }^2(k+\frac{1}{2})2^{2k}(k!)^2}&= \frac{{\varGamma }^2(2k+1)\pi }{2^{4k}{\varGamma }^2(k+\frac{1}{2})k^2{\varGamma }^2(k)}\\&= \frac{(2k)^2{\varGamma }^2(2k)\pi }{2^{4k}k^2 2^{2-4k}\pi {\varGamma }^2(2k)} = 1. \end{aligned}$$

Hence,

$$\begin{aligned} Cov(\varLambda (x), \varLambda (y))= \frac{((2k)!)^2\pi }{2^{2k}{\varGamma }^2(k+\frac{1}{2})}\sum _{i=0}^{k-1}\frac{(2^k \varGamma (k+\frac{1}{2}))^{2+\frac{2i}{k}}}{2^{2i}(i!)^2(2k-2i)!\pi ^{1/2k}}{\tilde{\rho }}^{2k-2i}(\Vert x-y \Vert ). \end{aligned}$$

Therefore, if \(|{\tilde{\rho }}(r)| \le C^{'}e^{-\gamma ^{'}r}, \, r>0,\, \gamma ^{'}>0,\) then the covariance function of Model 5 satisfies the condition \(|\rho _{\varLambda }(r)| \le Ce^{-\gamma r}, r>0, \, \gamma >0,\) and the Rényi function equals

$$\begin{aligned} T(q) = q-1-\frac{1}{2}\log _{b} E Y^{2kq}(x) = q-1-\frac{1}{2}\log _{b}\left( \frac{2^{kq}\varGamma (kq+\frac{1}{2})}{\sqrt{\pi }}\right) . \end{aligned}$$

\(\square \)

Proof

(Theorem 7.3) By properties of the chi-square distribution, it follows that

$$\begin{aligned} E \varLambda (x)= & {} \frac{2}{k}E Y(x) =1, \quad Var \varLambda (x) = \frac{4}{k^2}Var Y(x) = \frac{2}{k} < +\infty ,\\ Cov(\varLambda (x), \varLambda (y))= & {} \frac{4}{k^2}\rho _Y(\Vert x-y \Vert ). \end{aligned}$$

Notice that if \(Y(x) = \frac{1}{2}(Z_1^2(x)+\ldots +Z_k^2(x)), \, x \in {{\mathbb {R}}}^3,\) where \(Z_i(x),\) \(i=1,\ldots ,k,\) are independent zero-mean unit variance components of k-dimensional vector Gaussian HIRF with a covariance function \(\rho _Z(r), \, r \ge 0\) of each component, then

$$\begin{aligned} Cov(\varLambda (x), \varLambda (y)) = \frac{4}{k^2}\cdot \frac{k}{2}\rho _Z^2(\Vert x-y \Vert ) = \frac{2}{k}\rho _Z^2(\Vert x-y \Vert ). \end{aligned}$$

Therefore, Model 6 satisfies Conditions 1 and 2 and \(|\rho _\varLambda (r)| \le Ce^{-\gamma r}, \, r>0\), \(\gamma >0\), if \(|\rho _{Y}(r)| \le C'e^{-\gamma ^{'}r}\) or \(|\rho _{Z}(r)| \le C'e^{-\gamma ^{'}r}, \, r \ge 0, \gamma ^{'}>0.\)

Then, the corresponding Rényi function is given by (20). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonenko, N., Nanayakkara, R. & Olenko, A. Analysis of spherical monofractal and multifractal random fields. Stoch Environ Res Risk Assess 35, 681–701 (2021). https://doi.org/10.1007/s00477-020-01911-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-020-01911-z

Keywords

Navigation