Skip to main content
Log in

Gaussian process for estimating parameters of partial differential equations and its application to the Richards equation

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

This paper proposes a new collocation method for estimating parameters of a partial differential equation (PDE), which uses Gaussian process (GP) as a basis function and is termed as Gaussian process for partial differential equation (GPPDE). The conventional method of estimating parameters of a differential equation is to minimize the error between observations and their estimates. The estimates are produced from the forward solution (numerical or analytical) of the differential equation. The conventional approach requires initial and boundary conditions, and discretization of differential equations if the forward solution is obtained numerically. The proposed method requires fitting a GP regression model to the observations of the state variable, then obtaining derivatives of the state variable using the property that derivative of a GP is also a GP, and finally adjusting the PDE parameters so that the GP derived partial derivatives satisfy the PDE. The method does not require initial and boundary conditions, however if these conditions are available (exactly or with measurement errors), they can be easily incorporated. The GPPDE method is evaluated by applying it on the diffusion and the Richards equations. The results suggest that GPPDE can correctly estimate parameters of the two equations. For the Richards equation, GPPDE performs well in the presence of noise. A comparison of GPPDE with HYDRUS-1D software showed that their performances are comparable, though GPPDE has significant advantages in terms of computational time. GPPDE could be an effective alternative to conventional approaches for finding parameters of high-dimensional PDEs where large datasets are available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

AGM:

Adaptive gradient matching

GM:

Gradient matching

ASMO:

Adaptive surrogate modeling based optimization

ASMO-PODE:

ASMO-parameter optimization and distribution estimation

GP:

Gaussian process

GPODE:

Gaussian process ordinary differential equation

GPPDE:

Gaussian process for partial differential equation

ODE:

Ordinary differential equation

PDE:

Partial differential equation

\(\alpha\) :

Air-entry pressure head soil hydraulic parameter

\(\lambda\) :

Diffusivity

\(\varvec{\lambda }\) :

Set of parameters of PDE

\(\varvec{\phi }\) :

\([l, \sigma _s]\)

\(\varvec{\varPhi }\) :

\([l, \sigma _s, \sigma _y]\)

\(\sigma _s\) :

Hyperparameter of GP (scale parameter of kernel function)

\(\sigma _y\) :

Hyperparameter of GP (noise in GP model)

\(\theta\) :

Volumetric soil moisture

\(\theta _r\) :

Residual soil moisture

\(\theta _s\) :

Saturated soil moisture

\(\Theta\) :

Relative saturation; \(\dfrac{\theta-\theta_r}{\theta_s-\theta_r}\)

\({\mathbf {I}}\) :

Identity matrix

\(I({\varvec{\lambda }})\) :

Fisher information matrix

k :

Soil hydraulic conductivity

\(k_s\) :

Saturated soil hydraulic conductivity

\(k(\cdot )\) :

Covariance/kernel function

\({\mathbf {K}}\) :

Covariance matrix

l :

Hyperparameter of GP (length scale of kernel function)

m :

Number of independent variables

\(m_y\) :

Mean of Gaussian process

n :

Pore-size distribution soil hydraulic parameter

N :

Number of observations

\({\mathbb {R}}\) :

Real space

t :

Temporal dimension

x :

Independent variable/a spatial dimension

\(\mathbf {x}\) :

Vector of training independent variables

\({{\mathbf {x}}'}\) :

Vector of testing independent variables

\(\mathbf {X}\) :

Design matrix of dimension \(N \times m\)

y :

State variable

\({\mathbf {y}}\) :

Column vector of state variable

\({\tilde{y}}\) :

Observation

\({\tilde{{\mathbf {y}}}}\) :

Column vector of N observations

z :

A spatial dimension

References

  • Bilionis I (2016) Probabilistic solvers for partial differential equations. arXiv preprint arXiv:160703526

  • Bishop CM (2006) Pattern recognition and machine learning. Springer, Berlin

    Google Scholar 

  • Calderhead B, Girolami M, Lawrence ND (2008) Accelerating Bayesian inference over nonlinear differential equations with Gaussian processes. In: Advances in neural information processing systems, pp 217–224

  • Celia MA, Bouloutas ET, Zarba RL (1990) A general mass-conservative numerical solution for the unsaturated flow equation. Water Resour Res 26(7):1483–1496

    Article  Google Scholar 

  • Cockayne J, Oates CJ, Sullivan T, Girolami M (2016) Probabilistic meshless methods for partial differential equations and Bayesian inverse problems. arXiv preprint arXiv:160507811

  • Deb K (2012) Optimization for engineering design: algorithms and examples. PHI Learning Pvt. Ltd., New Delhi

    Google Scholar 

  • Dondelinger F, Husmeier D, Rogers S, Filippone M (2013) ODE parameter inference using adaptive gradient matching with Gaussian processes. In: Artificial intelligence and statistics, pp 216–228

  • Farthing MW, Ogden FL (2017) Numerical solution of richards equation: a review of advances and challenges. Soil Sci Soc Am J 81:1257–1269

    Article  CAS  Google Scholar 

  • Fletcher R (2013) Practical methods of optimization. Wiley, Hoboken

    Google Scholar 

  • Gong W, Duan Q (2017) An adaptive surrogate modeling-based sampling strategy for parameter optimization and distribution estimation (ASMO-PODE). Enviro Model Softw 95:61–75

    Article  Google Scholar 

  • Graepel T (2003) Solving noisy linear operator equations by Gaussian processes: application to ordinary and partial differential equations. In: ICML, pp 234–241

  • Hinton GE (2002) Training products of experts by minimizing contrastive divergence. Neural Comput 14(8):1771–1800

    Article  Google Scholar 

  • Holman D, Sridharan M, Gowda P, Porter D, Marek T, Howell T, Moorhead J (2014) Gaussian process models for reference ET estimation from alternative meteorological data sources. J Hydrol 517:28–35

    Article  Google Scholar 

  • Kool J, Parker J, van Genuchten MT (1985) Determining soil hydraulic properties from one-step outflow experiments by parameter estimation: I. Theory and numerical studies. Soil Sci Soc Am J 49(6):1348–1354

    Article  Google Scholar 

  • Krige DG (1951) A statistical approach to some basic mine valuation problems on the Witwatersrand. J South Afr Inst Min Metall 52(6):119–139

    Google Scholar 

  • Lagarias JC, Reeds JA, Wright MH, Wright PE (1998) Convergence properties of the nelder-mead simplex method in low dimensions. SIAM J Optim 9(1):112–147

    Article  Google Scholar 

  • Macdonald B, Husmeier D (2015) Gradient matching methods for computational inference in mechanistic models for systems biology: a review and comparative analysis. Front Bioeng Biotechnol 3:180

    Article  Google Scholar 

  • Macdonald B, Higham C, Husmeier D (2015) Controversy in mechanistic modelling with Gaussian processes. In: International conference on machine learning, pp 1539–1547

  • Marrel A, Iooss B, Laurent B, Roustant O (2009) Calculations of sobol indices for the gaussian process metamodel. Reliab Eng Syst Saf 94(3):742–751

    Article  Google Scholar 

  • Matheron G (1963) Principles of geostatistics. Econ Geol 58(8):1246–1266

    Article  CAS  Google Scholar 

  • Mayraz G, Hinton GE (2001) Recognizing hand-written digits using hierarchical products of experts. In: Advances in neural information processing systems, pp 953–959

  • McLaughlin D, Townley LR (1996) A reassessment of the groundwater inverse problem. Water Resour Res 32(5):1131–1161

    Article  Google Scholar 

  • Newton I (1736) The method of fluxions and infinite series. Henry Woodfall, London

    Google Scholar 

  • Nocedal J, Wright S (1999) Numerical optimization. Springer, New York

    Book  Google Scholar 

  • Poyton A, Varziri MS, McAuley KB, McLellan P, Ramsay JO (2006) Parameter estimation in continuous-time dynamic models using principal differential analysis. Comput Chem Eng 30(4):698–708

    Article  CAS  Google Scholar 

  • Raissi M, Perdikaris P, Karniadakis GE (2017a) Inferring solutions of differential equations using noisy multi-fidelity data. J Comput Phys 335:736–746

    Article  Google Scholar 

  • Raissi M, Perdikaris P, Karniadakis GE (2017b) Machine learning of linear differential equations using Gaussian processes. J Comput Phys 348:683–693

    Article  Google Scholar 

  • Raissi M, Perdikaris P, Karniadakis GE (2018) Numerical Gaussian processes for time-dependent and nonlinear partial differential equations. SIAM J Sci Comput 40(1):A172–A198

    Article  Google Scholar 

  • Ramsay JO, Hooker G, Campbell D, Cao J (2007) Parameter estimation for differential equations: a generalized smoothing approach. J R Stat Soc Ser B (Stat Methodol) 69(5):741–796

    Article  Google Scholar 

  • Rao CR (2008) Cramr-Rao bound. Scholarpedia 3(8):6533. https://doi.org/10.4249/scholarpedia.6533

    Article  Google Scholar 

  • Rao SS (2009) Engineering optimization: theory and practice. Wiley, Hoboken

    Book  Google Scholar 

  • Rasmussen CE, Williams CK (2006) Gaussian processes for machine learning, vol 1. MIT Press, Cambridge

    Google Scholar 

  • Reynolds RJ (1987) Diffusivity of glacial-outwash aquifer by the floodwave-response technique. Groundwater 25(3):290–299

    Article  Google Scholar 

  • Richards LA (1931) Capillary conduction of liquids through porous mediums. Physics 1(5):318–333

    Article  Google Scholar 

  • Ritter A, Hupet F, Muñoz-Carpena R, Lambot S, Vanclooster M (2003) Using inverse methods for estimating soil hydraulic properties from field data as an alternative to direct methods. Agric Water Manag 59(2):77–96

    Article  Google Scholar 

  • Rohatgi A (2011) WebPlotDigitizer. http://arohatgi.info/WebPlotDigitizer/app. Accessed 15 Feb 2018

  • Särkkä S (2011) Linear operators and stochastic partial differential equations in Gaussian process regression. In: International conference on artificial neural networks. Springer, pp 151–158

  • Simunek J, van Genuchten MT, Sejna M (2005) The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Univ Calif-Riverside Res Rep 3:1–240

    Google Scholar 

  • Solak E, Murray-Smith R, Leithead WE, Leith DJ, Rasmussen CE (2003) Derivative observations in Gaussian process models of dynamic systems. In: Advances in neural information processing systems, pp 1057–1064

  • Srivastava R (2006) Aquifer diffusivity estimation from response to stream stage variation. J Hydrol Eng 11(3):273–277

    Article  Google Scholar 

  • Strang G (2014) Differential equations and linear algebra. Wellesley-Cambridge Press, Wellesley

    Google Scholar 

  • Sun AY, Wang D, Xu X (2014) Monthly streamflow forecasting using Gaussian process regression. J Hydrol 511:72–81

    Article  Google Scholar 

  • Swamee PK, Singh SK (2003) Estimation of aquifer diffusivity from stream stage variation. J Hydrol Eng 8(1):20–24

    Article  Google Scholar 

  • Tripathi S, Govindaraju RS (2007) On selection of kernel parametes in relevance vector machines for hydrologic applications. Stoch Environ Res Risk Assess 21(6):747–764

    Article  Google Scholar 

  • van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898

    Article  Google Scholar 

  • Varah JM (1982) A spline least squares method for numerical parameter estimation in differential equations. SIAM J Sci Stat Comput 3(1):28–46

    Article  Google Scholar 

  • Vyshemirsky V, Girolami MA (2007) Bayesian ranking of biochemical system models. Bioinformatics 24(6):833–839

    Article  CAS  Google Scholar 

  • Wang C, Duan Q, Gong W, Ye A, Di Z, Miao C (2014) An evaluation of adaptive surrogate modeling based optimization with two benchmark problems. Environ Model Softw 60:167–179

    Article  Google Scholar 

  • Wang Y, Barber D (2014) Gaussian processes for Bayesian estimation in ordinary differential equations. In: International conference on machine learning, pp 1485–1493

  • Wu A, Aoi MC, Pillow JW (2017) Exploiting gradients and hessians in Bayesian optimization and Bayesian quadrature. arXiv preprint arXiv:170400060

  • Zhang J, Li W, Zeng L, Wu L (2016) An adaptive Gaussian process-based method for efficient Bayesian experimental design in groundwater contaminant source identification problems. Water Resour Res 52(8):5971–5984

    Article  Google Scholar 

Download references

Acknowledgements

Pankaj Kumar Rai received scholarship from Ministry of Human Resource Development, Government of India, for his Ph.D. program. Authors are thankful of Mr. Hemanta Medhi and Mr. Pramod Soni for their help in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivam Tripathi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Derivative of Gaussian covariance function \(k({{\mathbf {x}}},{\mathbf {x'}})\)

Gaussian covariance function is given by relation

$$\begin{aligned} k({{\mathbf {x}}},{\mathbf {x'}}) = {\sigma _s}^2\exp \left\{ {-\dfrac{1}{2}\sum _{i=1}^{m} \dfrac{{\left( {{x_i} - {x'_i}} \right) }^{2}}{l_i^2}} \right\} \end{aligned}$$
(25)

where \(l_i\)’s and \({\sigma _s}\) are the length and the scale parameters, respectively.

1.1 Derivative of covariance function with respect to hyperparameters

The derivatives of \({k_y}\left( {{{\mathbf {x}}},{\mathbf {x'}}} \right) ={k}\left( {{{\mathbf {x}}},{\mathbf {x'}}} \right) +\sigma _y^2\), where \(\sigma _y\) is the noise term, are given by.

$$\begin{aligned} {k_y}\left( {{{\mathbf {x}}},{\mathbf {x'}}} \right)&= {\sigma _s}^2\exp \left\{ {-\dfrac{1}{2}\sum _{i=1}^{m} \dfrac{{\left( {{x_i} - {x'_i}} \right) }^{2}}{l_i^2}} \right\} + \sigma _y^2 \end{aligned}$$
(26)
$$\begin{aligned} \dfrac{{\partial {k_y}}}{{\partial l_j}}= {\sigma _s}^2\exp \left\{ {-\dfrac{1}{2}\sum _{i=1}^{m} \dfrac{{\left( {{x_i} - {x'_i}} \right) }^{2}}{l_i^2}} \right\} {\dfrac{{\left( {{x_i} - {x'_i}} \right) }^{2}}{l_j^3}}; & \\ 1\leqslant j \leqslant m &\\\end{aligned}$$
(27)
$$\begin{aligned} \dfrac{{\partial {k_y}}}{{\partial {\sigma _s}}}&= 2{\sigma _s}\exp \left\{ {-\dfrac{1}{2}\sum _{i=1}^{m} \dfrac{{\left( {{x_i} - {x'_i}} \right) }^{2}}{l_i^2}} \right\} \end{aligned}$$
(28)
$$\begin{aligned} \dfrac{{\partial {k_y}}}{{\partial {\sigma _y}}}&= 2{\sigma _y} \end{aligned}$$
(29)

1.2 Derivatives of covariance function with respect to arguments

First derivative

$$\begin{aligned} \frac{{\partial k\left( {{{\mathbf {x}}},{\mathbf {x'}}} \right) }}{{\partial x_j^\prime }}&= \frac{\partial }{{\partial x_j^\prime }}\left[ {{\sigma _s}^2\exp \left\{ { - \frac{1}{2}\sum \limits _{i = 1}^m {\frac{{{{\left( {{x_i} - {{x'}_i}} \right) }^2}}}{l_i^2}} } \right\} } \right] ; 1\leqslant j \leqslant m\\ &={k\left( {{{\mathbf {x}}},{\mathbf {x'}}} \right) }\frac{\partial }{{\partial x_j^\prime }} \left[ { - \frac{1}{2}\sum \limits _{i = 1}^m {\frac{{{{\left( {{x_i} - {{x'}_i}} \right) }^2}}}{{l_i^2}}} } \right] \\&=k\left( {{{\mathbf {x}}},{\mathbf {x'}}} \right) \frac{{\left( {{x_j} - {{x'}_j}} \right) }}{{l_j^2}}\\ \end{aligned}$$
(30)

Second derivative

$$\begin{aligned} \begin{aligned} \frac{{{\partial ^2}k\left( {{{\mathbf {x}}},{\mathbf {x'}}} \right) }}{{\partial x_j^{\prime 2}}}&= \frac{\partial }{{\partial x_j^\prime }}\left[ {k\left( {{{\mathbf {x}}},{\mathbf {x'}}} \right) \frac{{\left( {{x_j} - {{x'}_j}} \right) }}{{l_j^2}}} \right] ; 1\leqslant j \leqslant m \\ \dfrac{{{\partial ^2}k\left( {{{\mathbf {x}}},{\mathbf {x'}}} \right) }}{{\partial {{{x}_j^{\prime }}}^2}}&= k\left( {{{\mathbf {x}}},{\mathbf {x'}}} \right) \frac{{\left( {{x_j} - {{x'}_j}} \right) }}{{l_j^2}}\frac{{\left( {{x_j} - {{x'}_j}} \right) }}{{l_j^2}} \\&\quad + k\left( {{{\mathbf {x}}},{\mathbf {x'}}} \right) \left( {\frac{{ - 1}}{{l_j^2}}} \right) \\&=\frac{{k\left( {{{\mathbf {x}}},{\mathbf {x'}}} \right) }}{{l_j^2}}\left[ {\frac{{{{\left( {{x_j} - {{x'}_j}} \right) }^2}}}{{l_j^2}} - 1} \right] \\ \end{aligned} \end{aligned}$$
(31)

Auto covariance

$$\begin{aligned} \begin{aligned} \frac{{{\partial ^2}k\left( {{{\mathbf {x}}},{\mathbf {x'}}} \right) }}{{\partial {x_j}\partial x_j^\prime }}&= \frac{\partial }{{\partial {x_j}}}\left[ {k\left( {{{\mathbf {x}}},{\mathbf {x'}}} \right) \frac{{\left( {{x_j} - {{x'}_j}} \right) }}{{l_j^2}}} \right] \\&= \frac{{k\left( {{{\mathbf {x}}},{\mathbf {x'}}} \right) }}{{l_j^2}}\left[ {1 - \frac{{{{\left( {{x_j} - {{x'}_j}} \right) }^2}}}{{l_j^2}}} \right] \end{aligned} \end{aligned}$$
(32)

Appendix 2: Factorization of the Richards equation

This appendix provides the representation of the Richards equation in terms of state variable \((\theta )\) and its partial derivatives \(\left( {\dfrac{{\partial \theta }}{{\partial t}},\dfrac{{\partial \theta }}{{\partial x}}\ {\mathrm {and}} \ \dfrac{{{\partial ^2}\theta }}{{\partial {x^2}}}} \right)\).

The van Genuchten (1980) model is used to relate hydraulic conductivity (k), pressure head (h) and relative saturation \((\Theta )\) as

$$\begin{aligned} \Theta &= \dfrac{1}{{{{\left[ {1 + {{\left( {\alpha \left| h \right| } \right) }^n}} \right] }^m}}} \end{aligned}$$
(33)
$$\begin{aligned} k &= {k_s}{\Theta ^{1/2}}{\left[ {1 - {{\left( {1 - {\Theta ^{1/m}}} \right) }^m}} \right] ^2} \end{aligned}$$
(34)

where \({k_s}\) is saturated hydraulic conductivity, and \({\theta _r}\) and \({\theta _s}\) are residual and saturated soil moisture content, respectively. The relative saturation terms \(\alpha \,\,({\hbox {L}}^{-1})\), m and n represent model parameters where, m and n are related as \(n\left( {1 - m} \right) = 1\). Term \((\Theta )\) is defined as

$$\begin{aligned} \Theta = \dfrac{{\theta - {\theta _r}}}{{{\theta _s} - {\theta _r}}} \end{aligned}$$
(35)

To write the Richards equation in terms of soil moisture and its partial derivatives, we need to estimate \(\dfrac{\partial {\Theta }}{\partial {\theta }}\), \(\dfrac{\partial {k}}{\partial {\Theta }}\), \(\dfrac{\partial {\Theta }}{\partial {h}}\) and \(\dfrac{\partial {h}}{\partial {\theta }}\). These partial derivatives were estimated as follows. Differentiating \(\Theta\) with respect to \(\theta\)

$$\begin{aligned} \dfrac{{\partial \Theta }}{{\partial \theta }} = \dfrac{1}{{{\theta _s} - {\theta _r}}} \end{aligned}$$
(36)

Differentiating (34) with respect to \(\Theta\)

$$\begin{aligned}\dfrac{{\partial k}}{{\partial \Theta }} &= 2{k_s}{\Theta ^{1/2}}\left[ {1 - {{\left( {1 - {\Theta ^{1/m}}} \right)}^m}} \right]\left[ {{{\left( {1 - {\Theta ^{1/m}}} \right)}^{m - 1}}\left({{\Theta ^{1/m - 1}}} \right)} \right] \\&+\dfrac{k_s}{2}{\Theta ^{-1/2}}{\left[ {1 - {{\left( {1 -{\Theta ^{1/m}}} \right)}^m}} \right]^2}\end{aligned}$$
(37)

Rearranging Eq. (34)

$$\begin{aligned} \begin{aligned} 1 + {\left( {\alpha \left| h \right| } \right) ^n}&= {\left( {\dfrac{1}{\Theta }} \right) ^{{1}/{m}}}\\ \left( {\alpha \left| h \right| } \right)&= {\left[ {{{\left( {\dfrac{1}{\Theta }} \right) }^{{1}/{m}}} - 1} \right] ^{{1}/{n}}} \end{aligned} \end{aligned}$$
(38)

Again rearranging (33) and differentiating it with respect to h

$$\begin{aligned} \dfrac{1}{\Theta }&= {\left[ {1 + {{\left( {\alpha \left| h \right| } \right) }^n}} \right] ^m}\end{aligned}$$
(39)
$$\begin{aligned} \dfrac{\partial }{{\partial h}}\left( {\dfrac{1}{\Theta }} \right)&= m{\left\{ {1 + {{\left( {\alpha \left| h \right| } \right) }^n}} \right\} ^{m - 1}}\left\{ {n{{\left( {\alpha \left| h \right| } \right) }^{n - 1}}} \right\} \alpha {\mathop {\mathrm{sign}}\nolimits } \left( h \right) \end{aligned}$$
(40)
$$\begin{aligned} \dfrac{{ - 1}}{{{\Theta ^2}}}\dfrac{{\partial \Theta }}{{\partial h}}&= \alpha mn{\mathop {\mathrm{sign}}\nolimits } \left( h \right) {\left\{ {1 + {{\left( {\alpha \left| h \right| } \right) }^n}} \right\} ^{m - 1}}\left\{ {{{\left( {\alpha \left| h \right| } \right) }^{n - 1}}} \right\} \end{aligned}$$
(41)

Substituting (38) into (41) (to represent \(\dfrac{\partial \Theta }{\partial h}\) as a function of \(\Theta )\)

$$\begin{aligned} \begin{aligned} \dfrac{{\partial \Theta }}{{\partial h}}&= - \dfrac{{\alpha m{\mathop {\mathrm{sign}}\nolimits } \left( h \right) }}{{1 - m}}{\Theta ^2}{\left\{ {{{\left( {\dfrac{1}{\Theta }} \right) }^{{1}/{m}}}} \right\} ^{m - 1}}{\left\{ {{{\left( {\dfrac{1}{\Theta }} \right) }^{{1}/{m}}} - 1} \right\} ^m}\\&= - \dfrac{{\alpha m{\mathop {\mathrm{sign}}\nolimits } \left( h \right) }}{{1 - m}}{\Theta ^{\left(- m + 1\right)/{m} + 2}}{\left\{ {{{\left( {\dfrac{1}{\Theta }} \right) }^{{1}/{m}}} - 1} \right\} ^m}\\&= - \dfrac{{\alpha m{\mathop {\mathrm{sign}}\nolimits } \left( h \right) }}{{1 - m}}{\Theta ^{\left(m + 1\right)/{m}}}{\left\{ {{{\left( {\dfrac{1}{\Theta }} \right) }^{{1}/{m}}} - 1} \right\} ^m}\\&= {B_0}{\Theta ^{\left(1 + m\right)/{m}}}{\left\{ {{{\Theta }^{{{ - 1}}/{m}}} - 1} \right\} ^m} \end{aligned} \end{aligned}$$
(42)

where \({B_0} = - \dfrac{{\alpha m{\mathop {\mathrm{sign}}\nolimits } \left( h \right) }}{{1 - m}}\)

Using Eq. (42), \(\dfrac{{\partial h}}{{\partial \theta }}\) could be obtained as

$$\begin{aligned}\dfrac{{\partial h}}{{\partial \theta }} = {\left( {\dfrac{{\partial \Theta }}{\partial h}} \right) ^{ - 1}}\dfrac{1}{{{\theta _s} - {\theta _r}}}=\dfrac{1}{B_0}{\Theta ^{ - \left( {1 + m}\right) /{m} }}{\left\{ {{\Theta ^{{-1}/{m}}} - 1} \right\} ^{ - m}}\end{aligned}$$
(43)

The Richards equation can be factorized into three terms as

$$\begin{aligned} \dfrac{{\partial \theta }}{{\partial t}}&= \dfrac{\partial }{{\partial z}}\left[ {k\dfrac{{\partial h}}{{\partial z}}} \right] + \dfrac{{\partial k}}{{\partial z}}\end{aligned}$$
(44)
$$\begin{aligned}&= \underbrace{\dfrac{{\partial k}}{{\partial z}}\dfrac{{\partial h}}{{\partial z}}}_{\mathrm{{Term 1}}} + \underbrace{k\dfrac{{{\partial ^2}h}}{{\partial {z^2}}}}_{\mathrm{{Term 2}}} + \underbrace{\dfrac{{\partial k}}{{\partial z}}}_{\mathrm{{Term 3}}} \end{aligned}$$
(45)

Term1:

$$\begin{aligned} \dfrac{{\partial k}}{{\partial z}}\dfrac{{\partial h}}{{\partial z}}&= {\mathrm {Term3}}\left[ {\dfrac{{\partial h}}{{\partial \theta }}\dfrac{{\partial \theta }}{{\partial z}}} \right] \end{aligned}$$
(46)
$$\begin{aligned}&= {\mathrm {Term3}}\left[ {\left\{ {{{\left( {\dfrac{{\partial \Theta }}{{\partial h}}} \right) }^{ - 1}}\dfrac{1}{{{\theta _s} - {\theta _r}}}} \right\} \dfrac{{\partial \theta }}{{\partial z}}} \right] \end{aligned}$$
(47)

Term1 is obtained by substituting (42) in (47).

Term2:

$$\begin{aligned} \begin{aligned} \dfrac{{{\partial ^2}h}}{{\partial {z^2}}}&= \dfrac{\partial }{{\partial z}}\left( {\dfrac{{\partial h}}{{\partial z}}} \right) \\&= \dfrac{\partial }{{\partial z}}\left( {\dfrac{{\partial h}}{{\partial \theta }}\dfrac{{\partial \theta }}{{\partial z}}} \right) \\&= \dfrac{{{\partial ^2}h}}{{\partial z\partial \theta }}\dfrac{{\partial \theta }}{{\partial z}} + \left( {\dfrac{{\partial h}}{{\partial \theta }}} \right) \dfrac{{{\partial ^2}\theta }}{{\partial {z^2}}} \end{aligned} \end{aligned}$$
(48)

Deriving \(\dfrac{{{\partial ^2}h}}{{\partial z\partial \theta }}\) by differentiating (43) with respect to z.

$$\begin{aligned}\dfrac{\partial }{{\partial z}}\left( {\dfrac{{\partial h}} {{\partial \theta }}} \right) &= -\dfrac{1}{{{B_0}}}\left({{\dfrac{{1 + m}}{m}} } \right){\Theta^{-\left(1+2m \right)/m}}{\left\{ {{\Theta ^{{-1}/{m}}} - 1} \right\}^{ - m}}\dfrac{{\partial \Theta }}{{\partial z}} \\& + \dfrac{1}{{{B_0}}}{\Theta ^{ - \left( {1 + m} \right)/{m}}}{\left\{ { {{\Theta ^{- 1/{m}}} - 1}} \right\}^{-m- 1}}\left({{\Theta ^{{-\left( 1+m\right)}/{m}}}} \right)\dfrac{{\partial\Theta }}{{\partial z}}\end{aligned}$$
(49)
$$\begin{aligned} \dfrac{\partial }{{\partial z}}\left( {\dfrac{{\partial h}}{{\partial \theta }}} \right)&= \dfrac{1}{{{B_0}}}\dfrac{{\partial \Theta }}{{\partial z}} \nonumber \times \\&\quad \quad \left[ \begin{array}{l} - \left( {\dfrac{{1 + m}}{m}} \right) {\Theta ^{{{ - \left( {1 + 2m} \right) }}/{m}}}{\left( {{\Theta ^{{{ - 1}}/{m}}} - 1} \right) ^{ - m}}\\ + {\Theta ^{ - \left(2 + 2m\right)/m }}{\left( {{\Theta ^{{ - 1}/{m}}} - 1} \right) ^{ - m - 1}} \end{array} \right] \end{aligned}$$
(50)
$$\begin{aligned} \dfrac{{{\partial ^2}h}}{{\partial z\partial \theta }}&= \dfrac{1}{{{B_0}}}\dfrac{1}{{{\theta _s} - {\theta _r}}}\dfrac{{\partial \theta }}{{\partial z}}\nonumber\times \\&\quad \quad \left[ \begin{array}{l} - \left( {\dfrac{{1 + m}}{m}} \right) {\Theta ^{{ - \left( {1 + 2m} \right) }/{m}}}{\left\{ {{\Theta ^{{ - 1}/{m}}} - 1} \right\} ^{ - m}}...\\ + {\Theta ^{ - \left( {2 + 2m}\right)/{m} }}{\left( {{\Theta ^{{ - 1}/{m}}} - 1} \right) ^{ - m - 1}} \end{array} \right] \end{aligned}$$
(51)

Term2 is obtained by substituting (43) and (51) in (48)

Term3:

$$\begin{aligned} \dfrac{{\partial k}}{{\partial z}} &= \dfrac{{\partial k}}{{\partial \theta }}\dfrac{{\partial \theta }}{{\partial z}} \end{aligned}$$
(52)
$$\begin{aligned} \dfrac{{\partial k}}{{\partial \theta }} &= \dfrac{{\partial k}}{{\partial \Theta }}\dfrac{{\partial \Theta }}{{\partial \theta }} \end{aligned}$$
(53)

Using (36), (53) and (37), Eq. (52) is expressed as

$$\begin{aligned} \begin{aligned} \dfrac{{\partial k}}{{\partial z}}&= \dfrac{{\partial k}}{{\partial \theta }}\dfrac{{\partial \theta }}{{\partial z}} = \dfrac{1}{{{\theta _s} - {\theta _r}}}{k_s}\dfrac{{\partial \theta }}{{\partial z}} \times\\&\quad \quad \left[ \begin{array}{l} 2{\Theta ^{1/2}}\left\{ {1 - {{\left( {1 - {\Theta ^{1/m}}} \right) }^m}} \right\} \left\{ {{{\left( {1 - {\Theta ^{1/m}}} \right) }^{m - 1}}\left( {{\Theta ^{1/m - 1}}} \right) } \right\} \\ + \dfrac{1}{2}{\Theta ^{ - 1/2}}{\left\{ {1 - {{\left( {1 - {\Theta ^{1/m}}} \right) }^m}} \right\} ^2} \end{array} \right] \end{aligned} \end{aligned}$$
(54)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, P.K., Tripathi, S. Gaussian process for estimating parameters of partial differential equations and its application to the Richards equation. Stoch Environ Res Risk Assess 33, 1629–1649 (2019). https://doi.org/10.1007/s00477-019-01709-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-019-01709-8

Keywords

Navigation