Skip to main content
Log in

A non-stationary geostatistical approach to multigaussian kriging for local reserve estimation

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Multigaussian kriging technique has many applications in mining, soil science, environmental science and other fields. Particularly, in the local reserve estimation of a mineral deposit, multigaussian kriging is employed to derive panel-wise tonnages by predicting conditional probability of block grades. Additionally, integration of a suitable change of support model is also required to estimate the functions of the variables with larger support than that of the samples. However, under the assumption of strict stationarity, the grade distributions and important recovery functions are estimated by multigaussian kriging using samples within a supposedly spatial homogeneous domain. Conventionally, the underlying random function model is required to be stationary in order to carry out the inference on ore grade distribution and relevant statistics. In reality, conventional stationary model often fails to represent complicated geological structure. Traditionally, the simple stationary model neither considers the obvious changes in local means and variances, nor is it able to replicate spatial continuity of the deposit and hence produces unreliable outcomes. This study deals with the theoretical design of a non-stationary multigaussian kriging model allowing change of support and its application in the mineral reserve estimation scenario. Local multivariate distributions are assumed here to be strictly stationary in the neighborhood of the panels. The local cumulative distribution function and related statistics with respect to the panels are estimated using a distance kernel approach. A rigorous investigation through simulation experiments is performed to analyze the relevance of the developed model followed by a case study on a copper deposit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Afzal P, Madani N, Shahbeik S, Yasrebi AB (2015) Multi-Gaussian kriging: a practice to enhance delineation of mineralized zones by Concentration–Volume fractal model in Dardevey iron ore deposit, SE Iran. J Geochem Explor 158:10–21

    Article  CAS  Google Scholar 

  • Brunsdon C, Fotheringham AS, Charlton ME (1996) Geographically weighted regression: a method for exploring spatial nonstationarity. Geogr Anal 28(4):281–298

    Article  Google Scholar 

  • Brunsdon C, Fotheringham A, Charlton M (2002) Geographically weighted summary statistics-a framework for localised exploratory data analysis. Comput Environ Urban 26(6):501–524

    Article  Google Scholar 

  • David M (1988) Handbook of applied advanced geostatistical ore reserve estimation. Developments in geomathematics 6. Elsevier, Amsterdam

    Google Scholar 

  • De-Vitry C, Vann J, Arvidson H (2007) A guide to selecting the optimal method of resource estimation for multivariate iron ore deposits. In: Proceedings of the iron ore conference, Citeseer, pp 67–77

  • Diggle P, Ribeiro J (2007) Model-based geostatistics. Springer, New York

    Google Scholar 

  • Emery X (2005) Simple and ordinary multigaussian kriging for estimating recoverable reserves. Math Geol 37(3):295–319

    Article  CAS  Google Scholar 

  • Emery X (2006a) Ordinary multigaussian kriging for mapping conditional probabilities of soil properties. Geoderma 132(1):75–88

    Article  Google Scholar 

  • Emery X (2006b) Two ordinary kriging approaches to predicting block grade distributions. Math Geol 38(7):801–819

    Article  CAS  Google Scholar 

  • Emery X (2008) Uncertainty modeling and spatial prediction by multi-Gaussian kriging: accounting for an unknown mean value. Comput Geosci 34(11):1431–1442

    Article  Google Scholar 

  • Emery X, Torres JFS (2005) Models for support and information effects: a comparative study. Math Geol 37(1):49–68

    Article  Google Scholar 

  • Fotheringham AS (1997) Trends in quantitative methods 1: stressing the local. Prog Hum Geogr 21:88–96

    Article  Google Scholar 

  • Fotheringham AS, Charlton ME, Brunsdon C (1998) Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis. Environ Plan A 30(11):1905–1927

    Article  Google Scholar 

  • Fotheringham AS, Brunsdon C, Charlton M (2002) Geographically weighted regression: the analysis of spatially varying relationships. Wiley, UK

    Google Scholar 

  • Fuentes M (2001) A high frequency kriging approach for non-stationary environmental processes. Environmetrics 12(5):469–483

    Article  CAS  Google Scholar 

  • Fuentes M, Smith RL (2001) A new class of nonstationary spatial models. Technical report, North Carolina State University, Raleigh, NC

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York

    Google Scholar 

  • Guagliardi I, Cicchella D, De Rosa R (2012) A geostatistical approach to assess concentration and spatial distribution of heavy metals in urban soils. Water Air Soil Pollut 223(9):5983–5998

    Article  CAS  Google Scholar 

  • Guibal D, Humphreys M, Sanguinetti H, Shrivastava P (1997) Geostatistical conditional simulation of a large iron orebody of the Pilbara Region in Western Australia. In: Proceedings fifth international geostatistical congress, geostatistics Wollongong’96, pp 695–706

  • Haas TC (1995) Local prediction of a spatio-temporal process with an application to wet sulfate deposition. J Am Stat Assoc 90(432):1189–1199

    Article  Google Scholar 

  • Higdon D, Swall J, Kern J (1999) Non-stationary spatial modeling. Bayesian Stat 6(1):761–768

    Google Scholar 

  • Ingebrigtsen R, Lindgren F, Steinsland I, Martino S (2015) Estimation of a non-stationary model for annual precipitation in southern Norway using replicates of the spatial field. Spat Stat 14:338–364

    Article  Google Scholar 

  • Isaaks EH, Srivastava MR (1989) Applied geostatistics. 551.72 ISA

  • Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic, New York

    Google Scholar 

  • Kim HM, Mallick BK, Holmes C (2005) Analyzing nonstationary spatial data using piecewise Gaussian processes. J Am Stat Assoc 100(470):653–668

    Article  CAS  Google Scholar 

  • Korvin G (1982) Axiomatic characterization of the general mixture rule. Geoexploration 19(4):267–276

    Article  Google Scholar 

  • Machuca-Mory DF, Deutsch CV (2013) Non-stationary geostatistical modeling based on distance weighted statistics and distributions. Math Geosci 45(1):31–48

    Article  Google Scholar 

  • Madani N, Emery X (2016) Plurigaussian modeling of geological domains based on the truncation of non-stationary Gaussian random fields. Stoch Environ Res Risk Assess 4:1–21

    Google Scholar 

  • Mardia KV, Goodall CR (1993) Spatial-temporal analysis of multivariate environmental monitoring data. Multivar Environ Stat 6(347–385):76

    Google Scholar 

  • Matheron G (1963) Principles of geostatistics. Econ Geol 58(8):1246–1266

    Article  CAS  Google Scholar 

  • Matheron G (1970) La théorie des variables régionalisées et ses applications. Ecole Nationale Supérieure des Mines de Paris

  • Matheron G (1976) A simple substitute for conditional expectation: the disjunctive kriging. In: Guarascio M, David M, Huijbregts C (eds) Advanced geostatistics in the mining industry. Springer, Dordrecht, pp 221–236

    Chapter  Google Scholar 

  • Matheron G (1984) The selectivity of the distributions and “the second principle of geostatistics”. In: Verly G, David M, Journel AG, Marechal A (eds) Geostatistics for natural resources characterization. Springer, Dordrecht, pp 421–433

    Chapter  Google Scholar 

  • Menezes R, Garcia-Soidán P, Febrero-Bande M (2005) A comparison of approaches for valid variogram achievement. Comput Stat 20(4):623–642

    Article  Google Scholar 

  • Park NW (2016) Time-series mapping of PM10 concentration using multi-gaussian space-time kriging: a case study in the Seoul metropolitan area. Korea, Adv Meteorol, p 2016

  • Rivoirard J (1994) Introduction to disjunctive kriging and non-linear geostatistics. Clarendon Press, Oxford

    Google Scholar 

  • Sampson PD, Guttorp P (1992) Nonparametric estimation of nonstationary spatial covariance structure. J Am Stat Assoc 87(417):108–119

    Article  Google Scholar 

  • Smith RL (1996) Estimating nonstationary spatial correlations. University of North Carolina (Preprint)

  • Soares A (2001) Direct sequential simulation and cosimulation. Math Geol 33(8):911–926

    Article  Google Scholar 

  • Vann J, Guibal D (1998) Beyond ordinary kriging–an overview of non-linear estimation. In: Proceedings of a one day symposium: beyond ordinary kriging

  • Vann J, Sans H (1995) Global estimation and change of support at the enterprise gold mine, Pine Creek, Northern Territory–application of the geostatistical discrete gaussian model. In: APCOM XXV Conference, AusIMM, Brisbane

  • Verly G (1983) The multigaussian approach and its applications to the estimation of local reserves. Math Geol 15(2):259–286

    Article  Google Scholar 

  • Verly G, Sullivan J (1985) Multigaussian and probability krigings-application to the Jerritt Canyon deposit. Min Eng 37(6):568–574

    Google Scholar 

  • Zhang W, Hb Zheng, Jb Zhang (2014) Application of nonlinear kriging method on estimation of daily precipitation distribution. Chin J Agrometeorol 6:014

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mainak Thakur.

Appendix

Appendix

This appendix aims at interpreting the variables used in the equations of this paper.

Z(x):

grade variable at location x

\(x_i\), \(i=1(1)n\):

spatial locations

h :

spatial distance

\(z_i\), \(i=1(1)n\):

grade values

\(P_\alpha\),\(\alpha =1(1)K\):

\(\alpha ^{th}\) panel

\(\epsilon\) :

background constant

w :

kernel bandwidth

z(x):

realization of the grade variable Z(x)

\(z_q(P)\) :

local sample data quantile

\(y_q\) :

standard Gaussian quantile

\(H_p(y)\) :

Hermite polynomial of order p

\(Z_P(v)\) :

grade of SMU v under panel P

\(Y_P(v)\) :

standard normal transform of \(Z_P(v)\)

\(Z_P(x)\) :

grade at sample point x under panel P

\(Y_P(x)\) :

standard normal transform of \(Z_P(x)\)

\(\phi (P)\) :

local Gaussian anamorphosis function

\(\phi _k(P), \ k=0,1,2, \ldots\) :

local anamorphosis coefficient

r(P):

local change of support coefficient

\(\rho _P(v_i,v_j)\) :

covariance between \(Y_P(v_i)\) and \(Y_P(v_j)\)

\(y_c\) :

Gaussian transformed cut-off of \(z_c\)

\(\sigma ^{SK}_{vP}\) :

local simple kriging variance

g(t):

pdf of standard Gaussian variable T

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, M., Samanta, B. & Chakravarty, D. A non-stationary geostatistical approach to multigaussian kriging for local reserve estimation. Stoch Environ Res Risk Assess 32, 2381–2404 (2018). https://doi.org/10.1007/s00477-018-1533-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-018-1533-1

Keywords

Navigation