Skip to main content

Advertisement

Log in

Spatiotemporal modeling of relative risk of dengue disease in Colombia

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Spatiotemporal modeling of relative risk of dengue disease provides useful risk maps for surveillance and forecasting. The objective of the study was to generate smoothed estimates of relative risk applying hierarchical Bayesian spatiotemporal models, including covariates derived from satellite images containing land surface temperature (LST) and normalized difference vegetation index, for the period January 2009–December 2015, in a medium–sized Colombian city. Our models are based on the spatiotemporal interaction modeling framework of relative risk, where the interaction effects are unstructured, temporal, spatial or inseparable, at a small spatial and temporal scales. We fitted the models using Markov chain MonteCarlo Simulations, selecting the best model using leave-one-out cross-validation and widely applicable information criteria. Our best model was the inseparable spatiotemporal interaction-effects plus LST with constant coefficient model. We found a weak, positive association between LST and cases of dengue. We discussed the strengths and weaknesses of our spatiotemporal models given the spatial and temporal resolution selected in the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Acharya BK, Cao C, Lakes T, Chen W, Naeem S (2016) Spatiotemporal analysis of dengue fever in Nepal from 2010 to 2014. BMC Public Health 16(1):849. doi:10.1186/s12889-016-3432-z

    Article  Google Scholar 

  • Alzahrani AG, Al Mazroa MA, Alrabeah AM, Ibrahim AM, Mokdad AH, Memish ZA (2013) Geographical distribution and spatio-temporal patterns of dengue cases in Jeddah governorate from 2006–2008. Trans R Soc Trop Med Hyg 107(1):23–29. doi:10.1093/trstmh/trs011

    Article  Google Scholar 

  • Anno S, Imaoka K, Tadono T, Igarashi T, Sivaganesh S, Kannathasan S, Kumaran V, Surendran SN (2015) Space-time clustering characteristics of dengue based on ecological, socio-economic and demographic factors in northern Sri Lanka. Geospat Health 10(2):376. doi:10.4081/gh.2015.376

    Article  Google Scholar 

  • Anselin L (2015) Local indicators of spatial association—LISA. Geogr Anal 27(2):93–115

    Article  Google Scholar 

  • Araujo RV, Albertini MR, Costa-da-Silva AL, Suesdek L, Soares Franceschi NC, Bastos NM, Katz G, Cardoso VA, Castro BC, Capurro ML, Cardoso VLA (2015) São Paulo urban heat islands have a higher incidence of dengue than other urban areas. Braz J Infect Dis 19(2):146–155

    Article  Google Scholar 

  • Banerjee S, Carlin BP, Gelfand AE (2015) Hierarchical modeling and analysisi for spatial data, 2nd edn. CRC Press. Taylor and Francis Group, Boca Raton

    Google Scholar 

  • Besag J, Kooperberg C (1995) On conditional and intrinsic autoregressions. Biometrika 4:733–46

    Google Scholar 

  • Buczak AL, Koshute PT, Babin SM, Feighner BH, Lewis SH (2012) A data-driven epidemiological prediction method for dengue outbreaks using local and remote sensing data. BMC Med Inform Decis Mak 12:124

    Article  Google Scholar 

  • Cadavid Restrepo A, Baker P, Clements AC (2014) National spatial and temporal patterns of notified dengue cases, Colombia 2007–2010. Trop Med Int Health 19(7):863–871

    Article  Google Scholar 

  • Chen CC, Teng YC, Lin BC, Fan IC, Chan TC (2016) Online platform for applying spacetime scan statistics for prospectively detecting emerging hot spots of dengue fever. Int J Health Geogr 15(1):43. doi:10.1186/s12942-016-0072-6

    Article  Google Scholar 

  • Christakos G (2000) Modern spatiotemporal geostatistics. Oxford University Press, New York

    Google Scholar 

  • Departamento Administrativo Nacional de Estadśtica (DANE), Dirección de Geoestadística (National Administrative Department of Statistics. Geostatistics office) (2015) Guía de descarga y uso, marco geoestadístico nacional (Download and use guide, national geostatistical framework). https://geoportal.dane.gov.co/metadatos/descarga_mgn/descargas/Manual_Descarga_MGN.pdf

  • Didan K (2015) MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006. NASA EOSDIS Land Processes. doi:10.5067/MODIS/MOD13Q1.006

  • Estallo EL, Carbajo AE, Grech MG, Frías-Céspedes M, López L, Lanfri MA, Ludueña-Almeida FF, Almirón WR (2014) Spatio-temporal dynamics of dengue 2009 outbreak in Córdoba City, Argentina. Acta Trop 136(1):129–136. doi:10.1016/j.actatropica.2014.04.024

    Article  CAS  Google Scholar 

  • Fahrmeir L, Kneib T, Lang S (2004) Penalized structured additive regression for space-time data: a Bayesian perspective. Stat Sin 14:731–761

    Google Scholar 

  • Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7:457–511

    Article  Google Scholar 

  • Getis A, Ord JK (1992) The analysis of spatial association by use of distance statistics. Geogr Anal 24(3):189–206

    Article  Google Scholar 

  • Gil JF, Palacios M, Krolewiecki AJ, Cortada P, Flores R, Jaime C, Arias L, Villalpando C, Alberti DÁmato AM, Nasser JR, Aparicio JP (2016) Spatial spread of dengue in a non-endemic tropical city in northern Argentina. Acta Trop 158:24–31. doi:10.1016/j.actatropica.2016.02.003

    Article  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2012) The elements of statistical learning. Data mining, inference and prediction, 2nd edn. Springer, New York

    Google Scholar 

  • Huang X, Yakob L, Devine G, Frentiu FD, Fu SY, Hu W (2016) Dynamic spatiotemporal trends of imported dengue fever in Australia. Sci Rep 6(30):360. doi:10.1038/srep30360

    Article  CAS  Google Scholar 

  • Herbreteau V, Salem G, Souris M, Hugot JP, Gonzalez JP (2007) Thirty years of use and improvement of remote sensing, applied to epidemiology: from early promises to lasting frustration. Health Place 13:400–403

    Article  Google Scholar 

  • Kazansky Y, Wood D, Sutherlun J (2016) The current and potential role of satellite remote sensing in the campaign against malaria. Acta Astronaut 121:292–305

    Article  Google Scholar 

  • Knorr-Held L (2000) Bayesian modelling of inseparable space-time variation in disease risk. Stat Med 19:2555–2567

    Article  CAS  Google Scholar 

  • Knox G (1964) The detection of space-time interactions. Appl Stat 13:25–29

    Article  Google Scholar 

  • Kulldorff M, Heffernan R, Hartman J, Assunção RM, Mostashari F (2005) A space-time permutation scan statistic for the early detection of disease outbreaks. PLoS Med 2:216–224

    Article  Google Scholar 

  • Lagazzio C, Dreassi E, Biggeri A (2001) Hierarchical Bayesian model for spacetime variation of disease risk. Stat Model 1:17–29

    Google Scholar 

  • Lawson A (2009) Bayesian disease mapping: hierarchical modeling in spatial epidemiology. Chapman & Hall/CRC Interdisciplinary Statistics Series, Boca Raton, FL

    Google Scholar 

  • Lawson A, Browne WJ, Vidal Rodeiro C (2003) Disease mapping with WinBUGS and MlwiN. Wiley, Chichester

    Book  Google Scholar 

  • Leroux B, Lei X, Breslow N (1999) Estimation of disease rates in small areas: a new mixed model for spatial dependence. In: Halloran M, Berry D (eds) Statistical models in epidemiology, the environment and clinical trials. Springer, New York, pp 135–78

    Google Scholar 

  • Lee D, Shaddick G (1999) Time-varying coefficient models for the analysis of air pollution and health outcome data. Biometrics 63:1253–1261. doi:10.1111/j.1541-0420.2007.00776.x

    Article  Google Scholar 

  • Lin CH, Wen TH, Teng HJ, Chang NT (2016) The spatio-temporal characteristics of potential dengue risk assessed by Aedes aegypti and Aedes albopictus in high-epidemic areas. Stoch Environ Res Risk Assess 30(8):2057–2066. doi:10.1007/s00477-014-0940-1

    Article  Google Scholar 

  • Ling CY, Gruebner O, Krämer A, Lakes T (2014) Spatio-temporal patterns of dengue in Malaysia: combining address and sub-district level. Geospat Health 9(1):131–140. doi:10.4081/gh.2014.11

    Article  Google Scholar 

  • Louis VR, Phalkey R, Horstick O, Ratanawong P, Wilder-Smith A, Tozan Y, Dambach P (2014) Modeling tools for dengue risk mapping—a systematic review. Int J Health Geogr 13(1):50

    Article  Google Scholar 

  • Lowe R, Bailey TC, Stephenson DB, Graham RJ, Coelho CAS, Sá Carvalho M, Barcellos C (2011) Spatio-temporal modelling of climate-sensitive disease risk: towards an early warning system for dengue in Brazil. Comput Geosci 37(3):371–381. doi:10.1016/j.cageo.2010.01.008

    Article  Google Scholar 

  • Lowe R, Bailey TC, Stephenson DB, Jupp TE, Graham RJ, Barcellos C, Carvalho MS (2013) The development of an early warning system for climate-sensitive disease risk with a focus on dengue epidemics in Southeast Brazil. Stat Med 32:864–883. doi:10.1002/sim.5549

    Article  Google Scholar 

  • Lowe R, Barcellos C, Coelho CAS, Bailey TC, Coelho GE, Graham R, Jupp T, Massa Ramalho W, Stephenson DB, Rodó X (2014) Dengue outlook for the World Cup in Brazil: an early warning model framework driven by real-time seasonal climate forecasts. Lancet Infect Dis 14(7):619–626. doi:10.1016/S1473-3099(14)70781-9

    Article  Google Scholar 

  • Lowe R, Cazelles B, Paul R, Rodó X (2016) Quantifying the added value of climate information in a spatio-temporal dengue model. Stoch Environ Res Risk Assess 30(8):2067–2078. doi:10.1007/s00477-015-1053-1

    Article  Google Scholar 

  • Lunn DJ, Thomas A, Best N, Spiegelhalter D (2000) WinBUGS—a Bayesian modelling framework: concepts, structure, and extensibility. Stat Comput 10:325–337

    Article  Google Scholar 

  • Lunn D, Spiegelhalter D, Thomas A, Best N (2009) The BUGS project: evolution, critique, and future directions. Stat Med 28:3049–3067

    Article  Google Scholar 

  • Martínez-Bello DA, López-Quílez A, Torres-Prieto A (2017) Bayesian dynamic modeling of time series of dengue disease case counts. PLoS Negl Trop Dis 11(7):e0005696. doi:10.1371/journal.pntd.0005696

    Article  Google Scholar 

  • Marzzano de Carvalho R, Nascimento LFC (2014) Space-time description of dengue outbreaks in Cruzeiro, São Paulo, in 2006 and 2011. Rev Assoc Méd Bras 60(6):565–570. doi:10.1590/1806-9282.60.06.016

    Article  Google Scholar 

  • Mondini A, Chiaravalloti-Neto F (2008) Spatial correlation of incidence of dengue with socioeconomic, demographic and environmental variables in a Brazilian city. Sci Total Environ 393(2–3):241–248. doi:10.1016/j.scitotenv.2008.01.010

    Article  CAS  Google Scholar 

  • Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37(1):17–23

    Article  CAS  Google Scholar 

  • Morato DG, Barreto FR, Braga JU, Natividade MS, da Costa MCN, Morato V, Da Teixeira MGLC (2015) The spatiotemporal trajectory of a dengue epidemic in a medium-sized city. Mem Inst Oswaldo Cruz 110(4):528–533. doi:10.1590/0074-0276140388

    Article  CAS  Google Scholar 

  • Naish S, Dale P, Mackenzie JS, McBride J, Mengersen K, Tong S (2014) Climate change and dengue: a critical and systematic review of quantitative modelling approaches. BMC Infect Dis 14(1):167. doi:10.1186/1471-2334-14-167

    Article  Google Scholar 

  • Nazri CD, Rodziah I, Hashim A (2009) Distribution pattern of a dengue fever outbreak using GIS. J Environ Health Res 9(2):89–97

    Google Scholar 

  • Poveda G, Estrada-Restrepo OA, Morales JE, Hernández O, Galeano A, Osorio S (2011) Integrating knowledge and management regarding the climate malaria linkages in Colombia. Curr Opin Environ Sustain 3:448–460

    Article  Google Scholar 

  • Quintero-Herrera LL, Ramírez-Jaramillo V, Bernal-Gutiérrez S, Cárdenas-Giraldo EV et al (2015) Potential impact of climatic variability on the epidemiology of dengue in Risaralda, Colombia, 2010–2011. J Infect Pubic Health 8:291–297

    Article  Google Scholar 

  • Reyes-castro PA, Harris RB, Brown HE, Christopherson GL, Ernst KC (2017) Spatio-temporal and neighborhood characteristics of two dengue outbreaks in two arid cities of Mexico. Acta Trop 167:174–182. doi:10.1016/j.actatropica.2017.01.001

    Article  Google Scholar 

  • Romero-Vega L, Pacheco O, de la Hoz-Restrepo F, Díaz-Quijano FA (2014) Evaluation of dengue fever reports during an epidemic, Colombia. Rev Saude Publica 48(6):899–905

    Article  Google Scholar 

  • Stewart-Ibarra AM, Lowe R (2013) Climate and non-climate drivers of dengue epidemics in southern coastal ecuador. Am J Trop Med Hyg 88(5):971–981. doi:10.4269/ajtmh.12-0478

    Article  Google Scholar 

  • Stewart-Ibarra AM, Muñoz ÁG, Ryan SJ, Ayala EB, Borbor-Cordova MJ, Finkelstein JL, Mejía R, Ordoñez T, Recalde-Coronel GC, Rivero K (2014) Spatiotemporal clustering, climate periodicity, and social-ecological risk factors for dengue during an outbreak in Machala, Ecuador, in 2010. BMC Infect Dis 14(1):610. doi:10.1186/s12879-014-0610-4

    Article  Google Scholar 

  • Telle O, Vaguet A, Yadav NK, Lefebvre B, Daudé E, Paul RE, Cebeillac A, Nagpal BN (2016) The spread of dengue in an endemic urban milieu—the case of Delhi, India. PloS ONE 11(1):e0146,539. doi:10.1371/journal.pone.0146539

    Article  CAS  Google Scholar 

  • Toan DTT, Hu W, Quang Thai P, Hoat LN, Wright P, Martens P (2013) Hot spot detection and spatio-temporal dispersion of dengue fever in Hanoi, Vietnam. Glob Health Action 6(18):632. doi:10.3402/gha.v6i0.18632

    Article  Google Scholar 

  • Troyo A, Fuller DO, Calderón-Arguedas O, Solano ME, Beier JC (2009) Urban structure and dengue fever in Puntarenas, Costa Rica. Singap J Trop Geogr 30(2):265–282. doi:10.1111/j.1467-9493.2009.00367.x

    Article  Google Scholar 

  • Tsai CT, Sung FC, Chen PS, Lin SC (2012) Exploring the spatial and temporal relationships between mosquito population dynamics and dengue outbreaks based on climatic factors. Stoch Environ Res Risk Assess 26(5):671–680. doi:10.1007/s00477-011-0527-z

    Article  Google Scholar 

  • Ugarte MD, Adin A, Goicoa T (2016) Two-level spatially structured models in spatio-temporal disease mapping. Stat Methods Med Res 25(4):1080–1100. doi:10.1177/0962280216660423

    Article  Google Scholar 

  • USGS (2011) Modis reprojection tool users manual. Release 4.1 April 2011. Land processes DAAC. United States Geological Service (USGS) Earth Resources Observation and Science (EROS) Center

  • Vehtari A, Gelman A, Gabry J (2016a) Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat Comput. doi:10.1007/s11222-016-9696-4

  • Vehtari A, Gelman A, Gabry J (2016b) Loo: efficient leave-one-out cross-validation and WAIC for Bayesian models R package version 0.1.6. https://github.com/jgabry/loo

  • Villabona-Arenas CJ, Ocazionez Jimenez RE, Jimenez Silva CL (2016) Dengue vaccine: considerations before rollout in Colombia. PLoS Negl Trop Dis 10(6):e0004653. doi:10.1371/journal.pntd.0004653

    Article  Google Scholar 

  • Villar LA, Rojas DP, Besada-Lombana S, Sarti E (2015a) Epidemiological trends of dengue disease in Colombia (2000–2011): a systematic review. PLoS Negl Trop Dis 9(3):1–16. doi:10.1371/journal.pntd.0003499

  • Villar L, Dayan GH, Arredondo-García JL, Rivera DM et al (2015b) Efficacy of a tetravalent dengue vaccine in children in Latin America. New Engl J Med 372(2):113–123. doi:10.1056/NEJMoa1411037

  • Wan Z, Hook S, Hulley G (2015) MOD11A2 MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1km SIN Grid V006. NASA EOSDIS Land Processes DAAC. doi:10.5067/MODIS/MOD11A2.006

  • Watanabe S (2010) Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J Mach Learn Res 11:3571–3594

    Google Scholar 

  • WHO (2012) Global strategy for dengue prevention and control, 2010–2020. World Health Organization, Geneva

  • Wijayanti SPM, Porphyre T, Chase-Topping M, Rainey SM, McFarlane M, Schnettler E, Biek R, Kohl A (2016) The importance of socio-economic versus environmental risk factors for reported dengue cases in Java, Indonesia. PLoS Negl Trop Dis 10(9):1–15. doi:10.1371/journal.pntd.0004964

    Article  Google Scholar 

  • Xavier DR, Figueiredo Mafra Magalhães MA, Gracie R, dos Reis IC, de Matos VP, Barcellos C (2017) Spatial-temporal diffusion of dengue in the municipality of Rio de Janeiro, 2000–2013. Cad Saúde Pública 33(2):1–13. doi:10.1590/0102-311X00186615

    Article  Google Scholar 

  • Yu HL, Yang SJ, Yen HJ, Christakos G (2011) A spatio-temporal climate-based model of early dengue fever warning in southern Taiwan. Stoch Environ Res Risk Assess 25(4):485–494. doi:10.1007/s00477-010-0417-9

    Article  Google Scholar 

  • Yu HL, Angulo JM, Cheng MH, Wu J, Christakos G (2014) An online spatiotemporal prediction model for dengue fever epidemic in Kaohsiung (Taiwan). Biom J 56(3):428–440. doi:10.1002/bimj.201200270

    Article  Google Scholar 

  • Yu HL, Lee CH, Chien LC (2016) A spatiotemporal dengue fever early warning model accounting for nonlinear associations with hydrological factors: a Bayesian maximum entropy approach. Stoch Environ Res Risk Assess 30(8):2127–2141. doi:10.1007/s00477-016-1328-1

    Article  Google Scholar 

Download references

Acknowledgements

Daniel Martínez-Bello acknowledges the support of the COLCIENCIAS by the Grant 646-2014. Antonio López-Quílez would like to thank the Ministerio de Economía y Competitividad (the Spanish Ministry of Economy and Finance) for its support in the form of the research Grant MTM2016-77501-P (jointly financed with the European Regional Development Fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Martínez-Bello.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 36745 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Bello, D., López-Quílez, A. & Prieto, A.T. Spatiotemporal modeling of relative risk of dengue disease in Colombia. Stoch Environ Res Risk Assess 32, 1587–1601 (2018). https://doi.org/10.1007/s00477-017-1461-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-017-1461-5

Keywords

Navigation