Skip to main content
Log in

Second-order non-stationary modeling approaches for univariate geostatistical data

  • Review
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

A fundamental decision to make during the analysis of geostatistical data is the modeling of the spatial dependence structure as stationary or non-stationary. Although second-order stationary modeling approaches have been successfully applied in geostatistical applications for decades, there is a growing interest in second-order non-stationary modeling approaches. This paper provides a review of modeling approaches allowing to take into account the second-order non-stationarity in univariate geostatistical data. One broad distinction between these modeling approaches relies on the way that the second-order non-stationarity is captured. It seems unlikely to prove that there would be the best second-order non-stationary modeling approach for all geostatistical applications. However, some of them are distinguished by their simplicity, interpretability, and flexibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almendral A, Abrahamsen P, Hauge R (2008). Multidimensional scaling and anisotropic covariance functions. In: Proceedings of the eight international geostatistics congress, pp 187–196

  • Anderes EB, Chatterjee S (2009) Consistent estimates of deformed isotropic Gaussian random fields on the plane. Ann Stat 37(5):2324–2350

    Article  Google Scholar 

  • Anderes EB, Stein ML (2008) Estimating deformations of isotropic Gaussian random fields on the plane. Ann Stat 36:719–741

    Article  Google Scholar 

  • Anderes EB, Stein ML (2011) Local likelihood estimation for nonstationary random fields. J Multivar Anal 102(3):506–520

    Article  Google Scholar 

  • Atkinson PM, Lloyd CD (2007) Non-stationary variogram models for geostatistical sampling optimisation: an empirical investigation using elevation data. Comput Geosci 33(10):1285–1300

    Article  Google Scholar 

  • Banerjee S, Gelfand AE, Knight JR, Sirmans CF (2004) Spatial modeling of house prices using normalized distance-weighted sums of stationary processes. J Bus Econ Stat 22(2):206–213

    Article  Google Scholar 

  • Bel L (2004) Non parametric variogram estimator: application to air pollution data. In: geoENV IV, geostatistics for environmental applications. Quantitative geology and geostatistics, vol 13. Springer, Dordrecht, pp 29–40

  • Boisvert JB, Deutsch CV (2011) Programs for kriging and sequential Gaussian simulation with locally varying anisotropy using non-Euclidean distances. Comput Geosci 37(4):495–510

    Article  Google Scholar 

  • Bolin D (2014) Spatial Matérn fields driven by non-Gaussian noise. Scand J Stat 41(3):557–579

    Article  Google Scholar 

  • Bolin D, Lindgren F (2011) Spatial models generated by nested stochastic partial differential equations, with an application to global ozone mapping. Ann Appl Stat 5(1):523–550

    Article  Google Scholar 

  • Bornn L, Shaddick G, Zidek JV (2012) Modeling nonstationary processes through dimension expansion. J Am Stat Assoc 107(497):281–289

    Article  Google Scholar 

  • Calder CA (2008) A dynamic process convolution approach to modeling ambient particulate matter concentrations. Environmetrics 19(1):39–48

    Article  CAS  Google Scholar 

  • Chang Y-M, Hsu N-J, Huang H-C (2010) Semiparametric estimation and selection for nonstationary spatial covariance functions. J Comput Graph Stat 19(1):117–139

    Article  Google Scholar 

  • Chilès JP, Delfiner P (2012) Geostatistics: modeling spatial uncertainty. Wiley, New York

    Book  Google Scholar 

  • Cohen A, Jones RH (1969) Regression on a random field. J Am Stat Assoc 64:1172–1182

    Article  Google Scholar 

  • Cressie N, Johannesson G (2008) Fixed rank kriging for very large spatial data sets. J R Stat Soc Ser B 70:209–226

    Article  Google Scholar 

  • Dagbert M, David M, Crozel D, Desbarats A (1984) Computing variograms in folded strata-controlled deposits. In: Verly G, David M, Journel AG, Marechal A (eds) Geostatistics for natural resources characterization: part 1. Springer, Dordrecht, pp 71–89

    Chapter  Google Scholar 

  • Dalang RC, Khoshnevisan D (2009) A minicourse on stochastic partial differential equations, vol 1962. Springer, Dordrecht

    Book  Google Scholar 

  • Damian D, Sampson PD, Guttorp P (2001) Bayesian estimation of semi-parametric non-stationary spatial covariance structures. Environmetrics 12(2):161–178

    Article  Google Scholar 

  • D’Hondt O, López-Martínez C, Ferro-Famil L, Pottier E (2007) Spatially nonstationary anisotropic texture analysis in SAR images. IEEE Trans Geosci Remote Sens 45(12–1):3905–3918

    Article  Google Scholar 

  • Ecker M, De Oliveira V, Isakson H (2013) A note on a non-stationary point source spatial model. Environ Ecol Stat 20(1):59–67

    Article  Google Scholar 

  • Ecker MD, Oliveira VD (2008) Bayesian spatial modeling of housing prices subject to a localized externality. Commun Stat Theory Methods 37(13):2066–2078

    Article  Google Scholar 

  • Fouedjio F (2015) Space deformation non-stationary geostatistical approach for prediction of geological objects: case study at El Teniente Mine (Chile). Nat Resour Res 25(3):283–296

    Article  Google Scholar 

  • Fouedjio F, Desassis N, Rivoirard J (2016) A generalized convolution model and estimation for non-stationary random functions. Spat Stat 16:35–52

    Article  Google Scholar 

  • Fouedjio F, Desassis N, Romary T (2015) Estimation of space deformation model for non-stationary random functions. Spat Stat 13:45–61

    Article  Google Scholar 

  • Fouedjio F, Séguret S (2016) Predictive geological mapping using closed-form non-stationary covariance functions with locally varying anisotropy: case study at El Teniente Mine (Chile). Nat Resour Res. doi:10.1007/s11053-016-9293-4

  • Fuentes M (2001) A high frequency kriging approach for non-stationary environmental processes. Environmetrics 12(5):469–483

    Article  CAS  Google Scholar 

  • Fuentes M (2002a) Interpolation of nonstationary air pollution processes: a spatial spectral approach. Stat Model 2(4):281–298

    Article  Google Scholar 

  • Fuentes M (2002b) Spectral methods for nonstationary spatial processes. Biometrika 89(1):197–210

    Article  Google Scholar 

  • Fuglstad G-A, Lindgren F, Simpson D, Rue H (2015a) Exploring a new class of non-stationary spatial Gaussian random fields with varying local anisotropy. Stat Sin 25:115–133

    Google Scholar 

  • Fuglstad G-A, Simpson D, Lindgren F, Rue H (2015b) Does non-stationary spatial data always require non-stationary random fields? Spat Stat 14C:505–531

    Article  Google Scholar 

  • Gosoniu L, Vounatsou P (2011) Non-stationary partition modeling of geostatistical data for malaria risk mapping. J Appl Stat 38(1):3–13

    Article  Google Scholar 

  • Gosoniu L, Vounatsou P, Sogoba N, Maire N, Smith T (2009) Mapping malaria risk in West Africa using a Bayesian nonparametric non-stationary model. Comput Stat Data Anal 53(9):3358–3371

    Article  Google Scholar 

  • Guillot G, Senoussi R, Monestiez P (2001). A positive definite estimator of the non stationary covariance of random fields. In: geoENV III, geostatistics for environmental applications. Quantitative geology and geostatistics, vol 11. Springer, Dordrecht, pp 333–344

  • Haas TC (1990a) Kriging and automated variogram modeling within a moving window. Atmos Environ Part A Gen Top 24(7):1759–1769

    Article  Google Scholar 

  • Haas TC (1990b) Lognormal and moving window methods of estimating acid deposition. J Am Stat Assoc 85(412):950–963

    Article  Google Scholar 

  • Harris P, Charlton M, Fotheringham AS (2010) Moving window kriging with geographically weighted variograms. Stoch Env Res Risk Assess 24(8):1193–1209

    Article  Google Scholar 

  • Heaton M, Katzfuss M, Berrett C (2014) Constructing valid spatial processes on the sphere using kernel convolutions. Environmetrics 25(1):2–15

    Article  Google Scholar 

  • Heaton MJ, Christensen WF, Terres MA (2015) Nonstationary Gaussian process models using spatial hierarchical clustering from finite differences. Technometrics. doi:10.1080/00401706.2015.1102763

    Google Scholar 

  • Higdon D (1998) A process-convolution approach to modelling temperatures in the North Atlantic Ocean. Environ Ecol Stat 5(2):173–190

    Article  Google Scholar 

  • Higdon D (2002) Space and space-time modeling using process convolutions, Springer edn. Springer, London, pp 37–56

    Google Scholar 

  • Higdon D, Swall J, Kern J (1999) Non-stationary spatial modeling. In: Bayesian statistics, vol 6. Oxford University Press, New York, pp 761–768

  • Hoef JMV, Peterson E, Theobald D (2006) Spatial statistical models that use flow and stream distance. Environ Ecol Stat 13(4):449–464

    Article  Google Scholar 

  • Holland D, Saltzman N, Cox LH, Nychka D (1999) Spatial prediction of sulfur dioxide in eastern United States. In: geoENV-II—geostatistics for environmental applications. Kluwer, Dordrecht, pp 65–76

  • Hughes-Oliver JM, González-Farías G (1999) Parametric covariance models for shock-induced stochastic processes. J Stat Plan Inference 77(1):51–72

    Article  Google Scholar 

  • Hughes-Oliver JM, González-Farías G, Lu JC, Chen D (1998a) Parametric nonstationary correlation models. Stat Probab Lett 40(3):267–278

    Article  Google Scholar 

  • Hughes-Oliver JM, Lu JC, Davis JC, Gyurcsik RS (1998b) Achieving uniformity in a semiconductor fabrication process using spatial modeling. J Am Stat Assoc 93(443):1252–1252

    Google Scholar 

  • Ingebrigtsen R, Lindgren F, Steinsland I (2014) Spatial models with explanatory variables in the dependence structure. Spat Stat 8:20–38

    Article  Google Scholar 

  • Ingebrigtsen R, Lindgren F, Steinsland I, Martino S (2015) Estimation of a non-stationary model for annual precipitation in southern Norway using replicates of the spatial field. Spat Stat 14C:338–364

    Article  Google Scholar 

  • Iovleff S, Perrin O (2004) Estimating a nonstationary spatial structure using simulated annealing. J Comput Graph Stat 13(1):90–105

    Article  Google Scholar 

  • Kim HM, Mallick BK, Holmes CC (2005) Analyzing nonstationary spatial data using piecewise Gaussian processes. J Am Stat Assoc 100(470):653–668

    Article  CAS  Google Scholar 

  • Kruskal JB (1964) Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29(1):1–27

    Article  Google Scholar 

  • Lefebvre Polus E, De Fouquet C, Bernard-Michel C, Flipo N, Poulin M (2008) Geostatistical model for concentrations or flow rates in streams: some results. In: Geostats 2008—8th international geostatistics congress, vol 2. Santiago, Chile, pp 871–880

  • Legleiter CJ, Kyriakidis PC (2006) Forward and inverse transformations between cartesian and channel-fitted coordinate systems for meandering rivers. Math Geol 38(8):927–958

    Article  Google Scholar 

  • Liang M, Marcotte D (2015) A class of non-stationary covariance functions with compact support. Stoch Environ Res Risk Assess 30(3):1–15

    CAS  Google Scholar 

  • Lindgren F, Rue H, Lindström J (2011) An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. J R Stat Soc Ser B 73(4):423–498

    Article  Google Scholar 

  • Løland A, Høst G (2003) Spatial covariance modelling in a complex coastal domain by multidimensional scaling. Environmetrics 14(3):307–321

    Article  Google Scholar 

  • Lloyd CD, Atkinson PM (2000) Interpolation elevation with locally-adaptative kriging. In: Atkinson P (ed) GIS and GeoComputation: innovations in GIS 7. Taylor & Francis, Park Drive, pp 241–253

    Google Scholar 

  • Lloyd CD, Atkinson PM (2002) Non-stationary approaches for mapping terrain and assessing prediction uncertainty. Trans GIS 6(1):17–30

    Article  Google Scholar 

  • Machuca-Mory D, Deutsch C (2013) Non-stationary geostatistical modeling based on distance weighted statistics and distributions. Math Geosci 45:31–48

    Article  Google Scholar 

  • Magneron C, Jeannee N, Le Moine O, Bourillet JF (2010) Integrating prior knowledge and locally varying parameters with moving-geostatistics: methodology and application to bathymetric mapping. In: geoENV VII—geostatistics for environmental applications, vol. 16. Springer, Dordrecht, pp 405–415

  • Mardia K, Goodall C (1993) Spatial-temporal analysis of multivariate environmental monitoring data. In: Multivariate environmental statistics. Elsevier Science Publishers, Amsterdam, pp 347–386

  • Matérn B (1986) Spatial Variation. Lecture notes in statistics. Springer, New york

  • Mateu J, Fernandez-Avilas G, Montero J (2010) On a class of non-stationary, compactly supported spatial covariance functions. Stoch Environ Res Risk Assess 27(2):1–13

    Google Scholar 

  • Matsuo T, Nychka D, Paul D (2011) Nonstationary covariance modeling for incomplete data: Monte Carlo EM approach. Comput Stat Data Anal 55(6):2059–2073

    Article  Google Scholar 

  • McBratney AB, Minasny B (2013) Spacebender. Spat Stat 4:57–67

    Article  Google Scholar 

  • Neto JHV, Schmidt AM, Guttorp P (2014) Accounting for spatially varying directional effects in spatial covariance structures. J R Stat Soc Ser C 63(1):103–122

    Article  Google Scholar 

  • Nott DJ, Dunsmuir WTM (2002) Estimation of nonstationary spatial covariance structure. Biometrika 89(4):819–829

    Article  Google Scholar 

  • Nychka D, Bandyopadhyay S, Hammerling D, Lindgren F, Sain S (2015) A multiresolution Gaussian process model for the analysis of large spatial datasets. J Comput Graph Stat 24(2):579–599

    Article  Google Scholar 

  • Nychka D, Saltzman N (1998) Design of air quality networks. In: Case studies in environmental statistics. Lectures notes in statistics, vol 132. Springer, New York, pp 51–76

  • Nychka D, Wikle C, Royle JA (2002) Multiresolution models for nonstationary spatial covariance functions. Stat Model 2(4):315–331

    Article  Google Scholar 

  • Oehlert GW (1993) Regional trends in sulfate wet deposition. J Am Stat Assoc 88(422):390–399

    Article  Google Scholar 

  • Paciorek CJ, Schervish MJ (2006) Spatial modelling using a new class of nonstationary covariance functions. Environmetrics 17(5):483–506

    Article  Google Scholar 

  • Perrin O, Meiring W (1999) Identifiability for non-stationary spatial structure. J Appl Probab 36(4):1244–1250

    Article  Google Scholar 

  • Perrin O, Meiring W (2003) Nonstationarity in Rn is second-order stationarity in R2n. J Appl Probab 40(3):815–820

    Google Scholar 

  • Perrin O, Monestiez P (1998) Modeling of non-stationary spatial covariance structure by parametric radial basis deformations. Quantitative geology and geostatistics, vol 11. Springer, Dordrecht, pp 175–186

  • Perrin O, Senoussi R (2000) Reducing non-stationary random fields to stationarity and isotropy using a space deformation. Stat Probab Lett 48(1):23–32

    Article  Google Scholar 

  • Pintore A, Holmes C (2004) Spatially adaptive non-stationary covariance functions via spatially adaptive spectra. Technical report, University of Oxford

  • Porcu E, Matkowski J, Mateu J (2010) On the non-reducibility of non-stationary correlation functions to stationary ones under a class of mean-operator transformations. Stoch Env Res Risk Assess 24(5):599–610

    Article  Google Scholar 

  • Rasmussen C, Williams C (2006) Gaussian processes for machine learning. Adaptative computation and machine learning series. University Press Group Limited, London

    Google Scholar 

  • Risser MD, Calder CA (2015) Regression-based covariance functions for nonstationary spatial modeling. Environmetrics 26(4):284–297

    Article  Google Scholar 

  • Rivest M, Marcotte D (2012) Kriging groundwater solute concentrations using flow coordinates and nonstationary covariance functions. J Hydrol 472–473:238–253

    Article  Google Scholar 

  • Rivest M, Marcotte D, Pasquier P (2012) Sparse data integration for the interpolation of concentration measurements using kriging in natural coordinates. J Hydrol 416–417:72–82

    Article  Google Scholar 

  • Sampson PD, Guttorp P (1992) Nonparametric-estimation of nonstationary spatial covariance structure. J Am Stat Assoc 87(417):108–119

    Article  Google Scholar 

  • Schmidt AM, Guttorp P, O’Hagan A (2011) Considering covariates in the covariance structure of spatial processes. Environmetrics 22(4):487–500

    Article  Google Scholar 

  • Schmidt AM, O’Hagan A (2003) Bayesian inference for non-stationary spatial covariance structure via spatial deformations. J R Stat Soc Ser B 65:743–758

    Article  Google Scholar 

  • Simpson D, Lindgren F, Rue H (2012) Think continuous: Markovian Gaussian models in spatial statistics. Spat Stat 1:16–29

    Article  Google Scholar 

  • Smith RL (1996) Estimating nonstationary spatial correlations. Technical report, University of North Carolina

  • Stein M (2005) Nonstationary spatial covariance functions. Technical report, University of Chicago

  • Stephenson J, Holmes C, Gallagher K, Pintore A (2005) A statistical technique for modelling non-stationary spatial processes. In: Geostatistics banff 2004, vols 1 and 2, vol 14. Springer, Dordrecht, pp 125–134

  • Vera J, Macias R, Angulo J (2008) Non-stationary spatial covariance structure estimation in oversampled domains by cluster differences scaling with spatial constraints. Stoch Env Res Risk Assess 22(1):95–106

    Article  Google Scholar 

  • Vera JF, Macias R, Angulo JM (2009) A latent class MDS model with spatial constraints for non-stationary spatial covariance estimation. Stoch Env Res Risk Assess 23(6):769–779

    Article  Google Scholar 

  • Walter C, McBratney AB, Douaoui A, Minasny B (2001) Spatial prediction of topsoil salinity in the Chelif Valley, Algeria, using local ordinary kriging with local variograms versus whole-area variogram. Soil Res 39(2):259–272

    Article  Google Scholar 

  • Whittle P (1954) On stationary processes in the plane. Biometrika 41(3/4):434–449

    Article  Google Scholar 

  • Whittle P (1963) Stochastic processes in several dimensions. Bull Int Stat Inst 40:974–994

    Google Scholar 

  • Zhu Z, Wu Y (2010) Estimation and prediction of a class of convolution-based spatial nonstationary models for large spatial data. J Comput Graph Stat 19(1):74–95

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francky Fouedjio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fouedjio, F. Second-order non-stationary modeling approaches for univariate geostatistical data. Stoch Environ Res Risk Assess 31, 1887–1906 (2017). https://doi.org/10.1007/s00477-016-1274-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-016-1274-y

Keywords

Navigation