Skip to main content

Advertisement

Log in

Clostridium difficile infection incidence prediction in hospitals (CDIIPH): a predictive model based on decision tree and fuzzy techniques

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Several risk factors associated with the increased likelihood of healthcare-associated Clostridium difficile infection (CDI) have been identified in the literature. These risk factors are mainly related to age, previous CDI, antimicrobial exposure, and prior hospitalization. No model is available in the published literature that can be used to predict the CDI incidence using healthcare administration data. However, the administrative data can be imprecise and may challenge the building of classical statistical models. Fuzzy set theory can deal with the imprecision inherent in such data. This research aimed to develop a model based on deterministic and fuzzy mathematical techniques for the prediction of hospital-associated CDI by using the explanatory variables controllable by hospitals and health authority administration. Retrospective data on CDI incidence and other administrative data obtained from 22 hospitals within a regional health authority in British Columbia were used to develop a decision tree (deterministic technique based) and a fuzzy synthetic evaluation model (fuzzy technique based). The decision tree model had a higher prediction accuracy than that of the fuzzy based model. However, among the common results predicted by two models, 72 % were correct. Therefore, this relationship was used to combine their results to increase the precision and the strength of evidence of the prediction. These models were further used to develop an Excel-based tool called C. difficile Infection Incidence Prediction in Hospitals (CDIIPH). The tool can be utilized by health authorities and hospitals to predict the magnitude of CDI incidence in the following quarter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agwa A, Leheta H, Salem A, Sadiq R (2013) Fate of drilling waste discharges and ecological risk assessment in the Egyptian Red Sea: an aquivalence-based fuzzy analysis. Stoch Environ Res Risk Assess 27:169–181. doi:10.1007/s00477-012-0574-0

    Article  Google Scholar 

  • Barbut F, Jones G, Eckert C (2011) Epidemiology and control of Clostridium difficile infections in healthcare settings: an update. Curr Opin Infect Dis 24:370–376

    Article  Google Scholar 

  • Borriello SP (1998) Pathogenesis of Clostridium difficile infection. J Antimicrob Chemother 41(Suppl C):13–19. doi:10.1093/jac/41.suppl_3.13

    Article  CAS  Google Scholar 

  • Brown KA, Fisman DN, Moineddin R, Daneman N (2014) The magnitude and duration of Clostridium difficile infection risk associated with antibiotic therapy: a hospital cohort study. PLoS ONE 9:1–9. doi:10.1371/journal.pone.0105454

    Article  CAS  Google Scholar 

  • Chen S-J, Hwang C-L (1992) Fuzzy multiple attribute decision making: methods and applications. Springer, Berling

    Book  Google Scholar 

  • Cheng CH, Lin Y (2002) Evaluating the best main battle tank using fuzzy decision theory with linguistic criteria evaluation. Eur J Oper Res 142:174–186. doi:10.1016/S0377-2217(01)00280-6

    Article  Google Scholar 

  • Chu T (2011) Evaluating consulting firms using a centroid ranking approach based fuzzy MCDM method, pp 112–118

  • Cohen SH, Gerding DN, Johnson S et al (2010) Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the Society for Healthcare Epidemiology of America (SHEA) and the Infectious Diseases Society of America (IDSA). Infect Control Hosp Epidemiol 31:431–455. doi:10.1086/651706

    Article  Google Scholar 

  • Dubberke ER, Olsen MA (2012) Burden of Clostridium difficile on the healthcare system. Clin Infect Dis 55(Suppl 2):S88–S92. doi:10.1093/cid/cis335

    Article  Google Scholar 

  • Dubberke ER, Yan Y, Reske KA et al (2011) Development and validation of a Clostridium difficile infection risk prediction model. Infect Control Hosp Epidemiol 32:360–366. doi:10.1086/658944

    Article  Google Scholar 

  • Dubberke ER, Carling P, Carrico R et al (2014) Strategies to prevent Clostridium difficile infections in acute care hospitals: 2014 update. Infect Control Hosp Epidemiol 35:628–645. doi:10.1086/676023

    Article  Google Scholar 

  • Faybishenko B (2010) Fuzzy-probabilistic calculations of water-balance uncertainty. Stoch Environ Res Risk Assess 24:939–952. doi:10.1007/s00477-010-0379-y

    Article  Google Scholar 

  • Garey KW, Dao-Tran TK, Jiang ZD et al (2008) A clinical risk index for Clostridium difficile infection in hospitalised patients receiving broad-spectrum antibiotics. J Hosp Infect 70:142–147. doi:10.1016/j.jhin.2008.06.026

    Article  CAS  Google Scholar 

  • Gravel D, Miller M, Simor A et al (2009) Health care-associated Clostridium difficile infection in adults admitted to acute care hospitals in Canada: a Canadian Nosocomial Infection Surveillance Program Study. Clin Infect Dis 48:568–576. doi:10.1086/596703

    Article  Google Scholar 

  • Lee CC (1990a) Fuzzy logic in control systems: fuzzy logic controller—Part I. IEEE Trans Syst Man Cybern 20:404–418. doi:10.1109/21.52551

    Article  Google Scholar 

  • Lee CC (1990b) Fuzzy logic in control systems: fuzzy logic controller—part II. IEEE Trans Syst Man Cybern. doi:10.1109/21.52552

    Google Scholar 

  • Lessa FC, Gould CV, McDonald LC (2012) Current status of Clostridium difficile infection epidemiology. Clin Infect Dis 55(Suppl 2):S65–S70. doi:10.1093/cid/cis319

    Article  CAS  Google Scholar 

  • Liou YT, Lo SL (2005) A fuzzy index model for trophic status evaluation of reservoir waters. Water Res 39:1415–1423. doi:10.1016/j.watres.2005.01.014

    Article  CAS  Google Scholar 

  • Lu R-S, Lo S-L, Hu J-Y (1999) Analysis of reservoir water quality using fuzzy synthetic evaluation. Stoch Environ Res Risk Assess 13:327. doi:10.1007/s004770050054

    Article  Google Scholar 

  • Perelle S, Gibert M, Bourlioux P et al (1997) Production of a complete binary toxin (Actin-specific ADP-ribosyltransferase) by Clostridium difficile CD196. Infect Immun 65:1402–1407

    CAS  Google Scholar 

  • Quinlan JR (1986) Induction of decision trees. Mach Learn 1:81–106. doi:10.1007/BF00116251

    Google Scholar 

  • Rapidminer (2014) RapidMiner: operator reference manual. Rapidminer, Boston

    Google Scholar 

  • Rokach L, Maimon O (2005) Decision trees. In: Data mining and knowledge discovery handbook, pp 165–192

  • Sadiq R, Rodriguez MJ (2004) Fuzzy synthetic evaluation of disinfection by-products: a risk-based indexing system. J Environ Manage 73:1–13. doi:10.1016/j.jenvman.2004.04.014

    Article  Google Scholar 

  • Sadiq R, Husain T, Veitch B, Bose N (2004) Risk-based decision-making for drilling waste discharges using a fuzzy synthetic evaluation technique. Ocean Eng 31:1929–1953. doi:10.1016/j.oceaneng.2004.05.001

    Article  Google Scholar 

  • Sadiq R, Rodriguez MJ, Imran SA, Najjaran H (2007) Communicating human health risks associated with disinfection by-products in drinking water supplies: a fuzzy-based approach. Stoch Environ Res Risk Assess 21:341–353. doi:10.1007/s00477-006-0069-y

    Article  Google Scholar 

  • Sevkli M (2010) An application of the fuzzy ELECTRE method for supplier selection. Int J Prod Res 48:3393–3405. doi:10.1080/00207540902814355

    Article  Google Scholar 

  • Simor AE, Williams V, McGeer A et al (2013) Prevalence of colonization and infection with methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus and of Clostridium difficile infection in Canadian hospitals. Infect Control Hosp Epidemiol 34:687–693. doi:10.1086/670998

    Article  Google Scholar 

  • Starr JM, Campbell A (2001) Mathematical modeling of Clostridium difficile infection. Clin Microbiol Infect 7:432–437. doi:10.1046/j.1198-743X.2001.00291.x

    Article  CAS  Google Scholar 

  • Tan P-N, Steinbach M, Kumar V (2006) Classification: basic concepts, decision trees, and model evaluation. In: Introduction to data mining, pp 145–205

  • Tanner J, Khan D, Anthony D, Paton J (2009) Waterlow score to predict patients at risk of developing Clostridium difficile-associated disease. J Hosp Infect 71:239–244. doi:10.1016/j.jhin.2008.11.017

    Article  CAS  Google Scholar 

  • Zadeh L (1965) Fuzzy sets. Inf Control 353:338–353

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial assistance of the Interior Health Authority (IHA), Kelowna, BC and the Natural Sciences and Engineering Research Council of Canada (NSERC) for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyan Chhipi-Shrestha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendices

Appendix 1

See Table 9.

Table 9 Raw data used for model development (Fiscal year 2015 quarter 1 as an example)

Appendix 2

See Figs 7, 8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chhipi-Shrestha, G., Mori, J., Hewage, K. et al. Clostridium difficile infection incidence prediction in hospitals (CDIIPH): a predictive model based on decision tree and fuzzy techniques. Stoch Environ Res Risk Assess 31, 417–430 (2017). https://doi.org/10.1007/s00477-016-1227-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-016-1227-5

Keywords

Navigation