Skip to main content
Log in

A Bayesian peaks-over-threshold analysis of floods in the Itajaí-açu River under stationarity and nonstationarity

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

In this paper we revisit the case study of Silva et al. (Stoch Env Res Risk A. doi:10.1007/s00477-015-1072-y, 2015), the Itajaí-açu River at Apiúna (Southern Brazil), with an augmented data set and Bayesian inferential techniques. Nonstationary Poisson-GP models are used to study the joint influence of El Niño-Southern Oscillation (ENSO) and of upstream flood control structures on the flood regime at the study site. The Niño3.4 DJF index and a dimensionless reservoir index are used as covariates. Prior belief about the GP shape parameter is elicited by fitting the GEV distribution to AMS samples from 138 sites in Southern Brazil with 40 or more years of data and deriving the distribution from the estimates of that parameter. Following a data-driven exploratory analysis, a Markov chain Monte Carlo (MCMC) procedure is used to sample from the posterior distribution of parameters. Model evaluation and selection used Bayes factors and two information criteria. Results show evidence that, while upstream dams play a significant, though small, role in reducing flood hazard, the influence of the climate covariate is stronger, and an increase in ENSO amplitude in the last decades has led to the occurrence of higher annual maximum floods. MCMC samples are used to derive the Bayesian predictive distribution of annual flood quantiles and design life levels. Uncertainty analyses based on the posterior distribution of parameters and quantiles are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abers RN (2007) Organizing for governance: building collaboration in brazilian river basins. World Dev 35(8):1450–1463. doi:10.1016/j.worlddev.2007.04.008

    Article  Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Contr 19(6):716–723. doi:10.1109/tac.1974.1100705

    Article  Google Scholar 

  • Ando T (2011) Predictive bayesian model selection. Am J Math Manag Sci 31(1–2):13–38. doi:10.1080/01966324.2011.10737798

    Google Scholar 

  • Balkema AA, de Haan L (1974) Residual life time at great age. Ann Probab 2(5):792–804. doi:10.1214/aop/1176996548

    Article  Google Scholar 

  • Bernardara P, Mazas F, Kergadallan X, Hamm L (2014) A two-step framework for over-threshold modelling of environmental extremes. Nat Hazard Earth Syst Sci 14(3):635–647. doi:10.5194/nhess-14-635-2014

    Article  Google Scholar 

  • Bhunya P, Singh R, Berndtsson R, Panda S (2012) Flood analysis using generalized logistic models in partial duration series. J Hydrol 420–421:59–71. doi:10.1016/j.jhydrol.2011.11.037

    Article  Google Scholar 

  • Bhunya P, Berndtsson R, Jain SK, Kumar R (2013) Flood analysis using negative binomial and generalized pareto models in partial duration series (PDS). J Hydrol 497:121–132. doi:10.1016/j.jhydrol.2013.05.047

    Article  Google Scholar 

  • Boone EL, Merrick JR, Krachey MJ (2012) A hellinger distance approach to MCMC diagnostics. J Stat Comput Sim 84(4):833–849. doi:10.1080/00949655.2012.729588

    Article  Google Scholar 

  • Casella G, Berger RL (1990) Statistical inference, vol 70. Duxbury Press, Belmont

    Google Scholar 

  • Coles S (2001) An introduction to statistical modeling of extreme values. Springer, London

    Book  Google Scholar 

  • Coles SG, Powell EA (1996) Bayesian methods in extreme value modelling: A review and new developments. Int Stat Rev 64(1):119. doi:10.2307/1403426

    Article  Google Scholar 

  • Coles SG, Tawn JA (1996) A Bayesian analysis of extreme rainfall data. J Roy Stat Soc C Appl Stat 45(4):463. doi:10.2307/2986068

    Google Scholar 

  • Correia FN (1983) Métodos de análise e determinação de caudais de cheia. Laboratório Nacional de Engenharia Civil, Lisbon

    Google Scholar 

  • Cunnane C (1979) A note on the poisson assumption in partial duration series models. Water Resour Res 15(2):489–494. doi:10.1029/wr015i002p00489

    Article  Google Scholar 

  • Davison A, Smith R (1990) Models for exceedances over high thresholds. J Roy Stat Soc B Methodol 52(3):393–442

    Google Scholar 

  • Davison AC (2003) Statistical models. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ekanayake ST, Cruise JF (1993) Comparisons of weibull- and exponential-based partial duration stochastic flood models. Stoch Hydrol Hydraul 7(4):283–297. doi:10.1007/bf01581616

    Article  Google Scholar 

  • El Adlouni S, Ouarda TBMJ, Zhang X, Roy R, Bobée B (2007) Generalized maximum likelihood estimators for the nonstationary generalized extreme value model. Water Resour Res 43(3):n/a–n/a. doi:10.1029/2005wr004545

  • Fernandes W, Naghettini M, Loschi R (2010) A bayesian approach for estimating extreme flood probabilities with upper-bounded distribution functions. Stoch Environ Res Risk A 24(8):1127–1143. doi:10.1007/s00477-010-0365-4

    Article  Google Scholar 

  • Field C, Barros V, Stocker T (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. special report of the intergovernmental panel on climate change (ipcc). Tech. rep., Intergovernmental Panel on Climate Change, Geneva (Switzerland). Cambridge University Press, New York, NY (United States)

  • Fisher RA, Tippett LHC (1928) Limiting forms of the frequency distribution of the largest or smallest member of a sample, vol 24. Cambridge University Press (CUP), Cambridge, pp 180–190. doi:10.1017/s0305004100015681

    Google Scholar 

  • Gamerman D, Lopes HF (2006) Markov chain Monte Carlo: stochastic simulation for Bayesian inference. CRC Press, Boca Raton

    Google Scholar 

  • Gelfand AE, Smith AFM (1990) Sampling-based approaches to calculating marginal densities. J Am Stat Assoc 85(410):398–409. doi:10.1080/01621459.1990.10476213

    Article  Google Scholar 

  • Geweke J (1992) Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments (with discussion). In: Bernardo J, Berger J, Dawid A, Smith A (eds) Bayesian statistics, vol 4. Oxford University Press, Oxford, pp 169–194

    Google Scholar 

  • Gnedenko B (1943) Sur la distribution limite du terme maximum d’une série aléatoire. Ann Math 44(3):423. doi:10.2307/1968974

    Article  Google Scholar 

  • Graham NE (1994) Decadal-scale climate variability in the tropical and north pacific during the 1970s and 1980s: observations and model results. Clim Dynam 10(3):135–162. doi:10.1007/bf00210626

    Article  Google Scholar 

  • Gringorten II (1963) A plotting rule for extreme probability paper. J Geophys Res 68(3):813–814. doi:10.1029/jz068i003p00813

    Article  Google Scholar 

  • Heffernan JE, Stephenson A, Gilleland E (2013) Ismev: an introduction to statistical modeling of extreme values. R Package Version 1:39

    Google Scholar 

  • Heidelberger P, Welch PD (1983) Simulation run length control in the presence of an initial transient. Oper Res 31(6):1109–1144. doi:10.1287/opre.31.6.1109

    Article  Google Scholar 

  • Hundecha Y, St-Hilaire A, Ouarda TBMJ, Adlouni SE, Gachon P (2008) A nonstationary extreme value analysis for the assessment of changes in extreme annual wind speed over the gulf of St. Lawrence, Canada. J Appl Meteorol Clim 47(11):2745–2759. doi:10.1175/2008jamc1665.1

    Article  Google Scholar 

  • Jiang C, Xiong L, Xu CY, Guo S (2014) Bivariate frequency analysis of nonstationary low-flow series based on the time-varying copula. Hydrol Process 29(6):1521–1534. doi:10.1002/hyp.10288

    Article  Google Scholar 

  • Kampstra P (2008) Beanplot: a boxplot alternative for visual comparison of distributions. J Stat Softw 28(1):1–9

    Google Scholar 

  • Katz RW (2012) Statistical methods for nonstationary extremes. In: AghaKouchak A, Easterling D, Hsu K, Schubert S, Sorooshian S (eds) Extremes in a changing climate. Springer, Berlin, pp 15–37. doi:10.1007/978-94-007-4479-0-2

    Google Scholar 

  • Kirby W (1969) On the random occurrence of major floods. Water Resour Res 5(4):778–784. doi:10.1029/wr005i004p00778

    Article  Google Scholar 

  • Kuczera G (1999) Comprehensive at-site flood frequency analysis using monte carlo Bayesian inference. Water Resour Res 35(5):1551–1557. doi:10.1029/1999wr900012

    Article  Google Scholar 

  • Laio F (2004) Cramer–von Mises and Anderson-Darling goodness of fit tests for extreme value distributions with unknown parameters. Water Resour Res 40(9):n/a–n/a. doi:10.1029/2004wr003204

  • Lang M, Ouarda T, Bobée B (1999) Towards operational guidelines for over-threshold modeling. J Hydrol 225(3–4):103–117. doi:10.1016/s0022-1694(99)00167-5

    Article  Google Scholar 

  • Latif M, Keenlyside NS (2008) El nino/southern oscillation response to global warming. Proc Natl Acad Sci 106(49):20578–20583. doi:10.1073/pnas.0710860105

    Article  Google Scholar 

  • López J, Francés F (2013) Non-stationary flood frequency analysis in continental spanish rivers, using climate and reservoir indices as external covariates. Hydrol Earth Syst Sci 17(8):3189–3203. doi:10.5194/hess-17-3189-2013

    Article  Google Scholar 

  • Machado MJ, Botero BA, López J, Francés F, Díez-Herrero A, Benito G (2015) Flood frequency analysis of historical flood data under stationary and non-stationary modelling. Hydrol Earth Syst Sci 19(6):2561–2576. doi:10.5194/hess-19-2561-2015

    Article  Google Scholar 

  • Madsen H, Rasmussen PF, Rosbjerg D (1997) Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events: 1. at-site modeling. Water Resour Res 33(4):747–757. doi:10.1029/96wr03848

    Article  Google Scholar 

  • Martins ES, Stedinger JR (2000) Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resour Res 36(3):737–744. doi:10.1029/1999wr900330

    Article  Google Scholar 

  • Martins ES, Stedinger JR (2001) Generalized maximum likelihood pareto-poisson estimators for partial duration series. Water Resour Res 37(10):2551–2557. doi:10.1029/2001wr000367

    Article  Google Scholar 

  • Martins ESP, Clarke RT (1993) Likelihood-based confidence intervals for estimating floods with given return periods. J Hydrol 147(1–4):61–81. doi:10.1016/0022-1694(93)90075-k

    Article  Google Scholar 

  • McGrayne SB (2011) The theory that would not die: how Bayes’ rule cracked the enigma code, hunted down Russian submarines, and emerged triumphant from two centuries of controversy. Yale University Press, New Heaven

    Google Scholar 

  • Merz B, Thieken AH (2005) Separating natural and epistemic uncertainty in flood frequency analysis. J Hydrol 309(1–4):114–132. doi:10.1016/j.jhydrol.2004.11.015

    Article  Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087. doi:10.1063/1.1699114

    Article  CAS  Google Scholar 

  • Milly PCD, Betancourt J, Falkenmark M, Hirsch RM, Kundzewicz ZW, Lettenmaier DP, Stouffer RJ (2008) Stationarity is dead: whither water management? Science 319(5863):573–574. doi:10.1126/science.1151915

    Article  CAS  Google Scholar 

  • Muñoz VA, de Morisson Valeriano M (2013) Mapping of flood-plain by processing of elevation data from remote sensing. In: Mathematics of planet earth, Springer, Berlin, pp 481–484. doi:10.1007/978-3-642-32408-6-106

  • Naghettini M, Pinto E (2007) Hidrologia estatística. CPRM, Belo Horizonte

    Google Scholar 

  • Neddermeyer JC (2009) Computationally efficient nonparametric importance sampling. J Am Stat Assoc 104(486):788–802. doi:10.1198/jasa.2009.0122

    Article  CAS  Google Scholar 

  • NERC (1975) Flood studies report, vol I. Natural Environment Research Council, Swindon

  • Ouarda T, El-Adlouni S (2011) Bayesian nonstationary frequency analysis of hydrological variables1. J Am Water Resour Assoc 47(3):496–505. doi:10.1111/j.1752-1688.2011.00544.x

    Article  Google Scholar 

  • Paulino CDM, Turkman MAA, Murteira B (2003) Estatística Bayesiana. Fundação Calouste Gulbenkian, Lisboa

    Google Scholar 

  • Pickands J III (1975) Statistical inference using extreme order statistics. Ann Stat 3(1):119–131. doi:10.1214/aos/1176343003

    Article  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Rayner NA (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res, 108(D14). doi:10.1029/2002jd002670

  • Renard B, Lang M, Bois P (2006) Statistical analysis of extreme events in a non-stationary context via a bayesian framework: case study with peak-over-threshold data. Stoch Environ Res Risk A 21(2):97–112. doi:10.1007/s00477-006-0047-4

    Article  Google Scholar 

  • Renard B, Sun X, Lang M (2013) Bayesian methods for non-stationary extreme value analysis. In: Extremes in a changing climate, Springer, Berlin, pp 39–95. doi:10.1007/978-94-007-4479-0-3

  • Robert C (2007) The Bayesian choice: from decision-theoretic foundations to computational implementation, 2nd edn. Springer, New York (Springer texts in statistics)

    Google Scholar 

  • Robert C, Casella G (2004) Monte Carlo statistical methods, 2nd edn. Springer, New York (Springer texts in statistics)

    Book  Google Scholar 

  • Rootzén H, Katz RW (2013) Design life level: quantifying risk in a changing climate. Water Resour Res 49(9):5964–5972. doi:10.1002/wrcr.20425

    Article  Google Scholar 

  • Rosbjerg D, Rasmussen F (1991) Modelling of exceedances in partial duration series. In: Proceeding of the international hydrology and water resources symposium, National Conference Publication- Institute of Engineers. Australia, vol 3, pp 755–760

  • Rosbjerg D, Madsen H, Rasmussen PF (1992) Prediction in partial duration series with generalized pareto-distributed exceedances. Water Resour Res 28(11):3001–3010. doi:10.1029/92wr01750

    Article  Google Scholar 

  • Serinaldi F, Kilsby CG (2015) Stationarity is undead: uncertainty dominates the distribution of extremes. Adv Water Resour 77:17–36. doi:10.1016/j.advwatres.2014.12.013

    Article  Google Scholar 

  • Shane R, Lynn W (1964) Mathematical model for flood risk evaluation. J Hydr Eng Div-ASCE 90(6):4119–4122

    Google Scholar 

  • Silva AT, Portela MM, Naghettini M (2013) On peaks-over-threshold modeling of floods with zero-inflated poisson arrivals under stationarity and nonstationarity. Stoch Environ Res Risk A 28(6):1587–1599. doi:10.1007/s00477-013-0813-z

    Article  Google Scholar 

  • Silva AT, Naghettini M, Portela MM (2015) On some aspects of peaks-over-threshold modeling of floods under nonstationarity using climate covariates. Stoch Env Res Risk A. doi:10.1007/s00477-015-1072-y

  • Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2014) The deviance information criterion: 12 years on. J Roy Stat Soc B Methodol 76(3):485–493. doi:10.1111/rssb.12062

    Article  Google Scholar 

  • Statisticat LLC (2013) LaplacesDemon: complete environment for Bayesian inference. R Package Version 13(04)

  • Stedinger JR (1983) Design events with specified flood risk. Water Resour Res 19(2):511–522. doi:10.1029/wr019i002p00511

    Article  Google Scholar 

  • Sun X, Thyer M, Renard B, Lang M (2014) A general regional frequency analysis framework for quantifying local-scale climate effects: a case study of ENSO effects on southeast queensland rainfall. J Hydrol 512:53–68. doi:10.1016/j.jhydrol.2014.02.025

    Article  Google Scholar 

  • Tramblay Y, Neppel L, Carreau J, Najib K (2013) Non-stationary frequency analysis of heavy rainfall events in southern france. Hydrol Sci J 58(2):280–294. doi:10.1080/02626667.2012.754988

    Article  Google Scholar 

  • Vicens GJ, Rodriguez-Iturbe I, Schaake JC (1975) A Bayesian framework for the use of regional information in hydrology. Water Resour Res 11(3):405–414. doi:10.1029/WR011i003p00405

    Article  Google Scholar 

  • Viglione A, Merz R, Salinas JL, Blöschl G (2013) Flood frequency hydrology: 3. A bayesian analysis. Water Resour Res 49(2):675–692. doi:10.1029/2011wr010782

    Article  Google Scholar 

  • Wilby RL, Keenan R (2012) Adapting to flood risk under climate change. Prog Phys Geog 36(3):348–378. doi:10.1177/0309133312438908

    Article  Google Scholar 

  • Wood EF, Rodríguez-Iturbe I (1975) A bayesian approach to analyzing uncertainty among flood frequency models. Water Resour Res 11(6):839–843. doi:10.1029/wr011i006p00839

    Article  Google Scholar 

  • Wood EF, Rodríguez-Iturbe I (1975) Bayesian inference and decision making for extreme hydrologic events. Water Resour Res 11(4):533–542. doi:10.1029/WR011i004p00533

    Article  Google Scholar 

  • Zelenhasic E (1970) Theoretical probability distributions for flood peaks. Hydrology paper 42, Colorado State University, Fort Collins, CO

Download references

Acknowledgments

The authors wish to acknowledge the financial support to this research, provided by the Portuguese Science and Technology Foundation (FCT) through a scholarship for A.T. Silva (grant SFRH/BD/86522/2012), and by the Brazilian Council for the Development of Science and Technology (CNPq) through a grant for M. Naghettini (302382/2012-7). The authors also wish to thank the Associate Editor Dr. Francesco Serinaldi of Newcastle University, two anonymous reviewers and Dr. Alberto Viglione of the Vienna University of Technology for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Tiago Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, A.T., Portela, M.M., Naghettini, M. et al. A Bayesian peaks-over-threshold analysis of floods in the Itajaí-açu River under stationarity and nonstationarity. Stoch Environ Res Risk Assess 31, 185–204 (2017). https://doi.org/10.1007/s00477-015-1184-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-015-1184-4

Keywords

Navigation