Skip to main content
Log in

Can we tell more than we can know? The limits of bivariate drought analyses in the United States

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

The joint occurrence of extreme hydroclimatic events, such as simultaneous precipitation deficit and high temperature, results in the so-called compound events, and has a serious impact on risk assessment and mitigation strategies. Multivariate frequency analysis (MFA) allows a probabilistic quantitative assessment of this risk under uncertainty. Analyzing precipitation and temperature records in the contiguous United States (CONUS), and focusing on the assessment of the degree of rarity of the 2014 California drought, we highlight some critical aspects of MFA that are often overlooked and should be carefully taken into account for a correct interpretation of the results. In particular, we show that an informative exploratory data analysis (EDA) devised to check the basic hypotheses of MFA, a suitable assessment of the sampling uncertainty, and a better understanding of probabilistic concepts can help to avoid misinterpretation of univariate and multivariate return periods, and incoherent conclusions concerning the risk of compound extreme hydroclimatic events. Empirical results show that the dependence between precipitation deficit and temperature across the CONUS can be positive, negative or not significant and does not exhibit significant changes in the last three decades. Focusing on the 2014 California drought as a compound event and based on the data used, the probability of occurrence strongly depends on the selected variables and how they are combined, and is affected by large uncertainty, thus preventing definite conclusions about the actual degree of rarity of this event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • AghaKouchak A, Cheng L, Mazdiyasni O, Farahmand A (2014) Global warming and changes in risk of concurrent climate extremes: insights from the 2014 California drought. Geophys Res Lett 41(24):8847–8852

    Article  Google Scholar 

  • Beran J (1989) A test of location for data with slowly decaying serial correlations. Biometrika 76(2):261–269

    Article  Google Scholar 

  • Cohn TA, Lins HF (2005) Nature’s style: naturally trendy. Geophys Res Lett 32(23):L23402

    Article  Google Scholar 

  • De Michele C, Salvadori G, Canossi M, Petaccia A, Rosso R (2005) Bivariate statistical approach to check adequacy of dam spillway. J Hydrol Eng 10(1):50–57

    Article  Google Scholar 

  • De Michele C, Salvadori G, Passoni G, Vezzoli R (2007) A multivariate model of sea storms using copulas. Coast Eng 54(10):734–751

    Article  Google Scholar 

  • Dehling H, Vogel D, Wendler M, Wied D (2015) Testing for changes in the rank correlation of time series. http://lanl.arxiv.org/abs/1203.4871v4, pp 1–26

  • Dimitriadis P, Koutsoyiannis D (2015) Climacogram versus autocovariance and power spectrum in stochastic modelling for Markovian and Hurst-Kolmogorov processes. Stoch Environ Res Risk Assess. doi:10.1007/s00477-015-1023-7

  • Dung NV, Merz B, Bárdossy A, Apel H (2015) Handling uncertainty in bivariate quantile estimation—an application to flood hazard analysis in the Mekong Delta. J Hydrol 527:704–717

    Article  Google Scholar 

  • Favre A, El Adlouni S, Perreault L, Thiémonge N, Bobée B (2004) Multivariate hydrological frequency analysis using copulas. Water Resour Res 40(1):W01101

    Article  Google Scholar 

  • Frahm G, Junker M, Schmidt R (2005) Estimating the tail-dependence coefficient: properties and pitfalls. Insur: Math Econ 37(1):80–100

    Google Scholar 

  • Genest C, Favre AC (2007) Everything you always wanted to know about copula modeling but were afraid to ask. J Hydrol Eng 12(4):347–368

    Article  Google Scholar 

  • Genest C, Rémillard B (2008) Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models. Annales de l’Institut Henri Poincaré: Probabilités et Statistiques 44(6):1096–1127

    Article  Google Scholar 

  • Genest C, Favre AC, Béliveau J, Jacques C (2007) Metaelliptical copulas and their use in frequency analysis of multivariate hydrological data. Water Resour Res 43(W09):401

    Google Scholar 

  • Genest C, Rémillard B, Beaudoin D (2009) Goodness-of-fit tests for copulas: a review and a power study. Insur: Math Econ 44(2):199–213

    Google Scholar 

  • Ghizzoni T, Roth G, Rudari R (2010) Multivariate skew-t approach to the design of accumulation risk scenarios for the flooding hazard. Adv Water Resour 33(10):1243–1255

    Article  Google Scholar 

  • Griffin D, Anchukaitis KJ (2014) How unusual is the 2012–2014 California drought? Geophys Res Lett 41(24):9017–9023

    Article  Google Scholar 

  • Grimaldi S, Serinaldi F (2006) Asymmetric copula in multivariate flood frequency analysis. Adv Water Res 29(8):1155–1167

    Article  Google Scholar 

  • Guerreiro SB, Kilsby CG, Serinaldi F (2014) Analysis of time variation of rainfall in transnational basins in Iberia: abrupt changes or trends? Intern J Climat 34(1):114–133

    Article  Google Scholar 

  • Guilderson TP, Schrag DP (1998) Abrupt shift in subsurface temperatures in the tropical Pacific associated with changes in El Niño. Science 281(5374):240–243

    Article  CAS  Google Scholar 

  • Hamed KH (2009) Enhancing the effectiveness of prewhitening in trend analysis of hydrologic data. J Hydrol 368(1–4):143–155

    Article  Google Scholar 

  • Hamed KH (2011) The distribution of Kendall’s tau for testing the significance of cross-correlation in persistent data. Hydrol Sci J 56(5):841–853

    Article  Google Scholar 

  • Hamon WR (1961) Estimating potential evapotranspiration. J Hydraul Div Proc Am Soc Civil Eng 87:107120

    Google Scholar 

  • Hare SR, Mantua NJ (2000) Empirical evidence for North Pacific regime shifts in 1977 and 1989. Prog Oceanogr 47(2–4):103–145

    Article  Google Scholar 

  • Heiberger RM (2012) HH: statistical analysis and data display: Heiberger and Holland. URL http://CRAN.R-project.org/package=HH, R package version 2.3-17

  • Hosking JRM (2014) L-moments. URL http://CRAN.R-project.org/package=lmom, R package, version 2.4

  • Hyndman RJ, Einbeck J, Wand M (2012) Hdrcde: Highest density regions and conditional density estimation. URL http://CRAN.R-project.org/package=hdrcde, R package version 2.16

  • Kao S, Govindaraju RS (2010) A copula-based joint deficit index for droughts. J Hydrol 380(12):121–134

    Article  Google Scholar 

  • Karl T, Koss WJ (1984) Historical climatology series 4–3: regional and national monthly, seasonal, and annual temperature weighted by area, 1895–1983. National Climatic Data Center

  • Karmakar S, Simonovic SP (2009) Bivariate flood frequency analysis. Part 2: a copula-based approach with mixed marginal distributions. J Flood Risk Manag 2(1):32–44

    Article  Google Scholar 

  • Kelly K, Krzysztofowicz R (1997) A bivariate meta-Gaussian density for use in hydrology. Stoch Hydrol Hydraul 11(1):17–31

    Article  Google Scholar 

  • Kendall MG (1975) Rank correlation methods. Charles Griffin, London

    Google Scholar 

  • Kojadinovic I, Yan J (2010) Modeling multivariate distributions with continuous margins using the copula R package. J Stat Softw 34(9):1–20, URL http://www.jstatsoft.org/v34/i09/

  • Kojadinovic I, Yan J (2011) A goodness-of-fit test for multivariate multiparameter copulas based on multiplier central limit theorems. Stat Comput 21(1):17–30

    Article  Google Scholar 

  • Kojadinovic I, Yan J, Holmes M (2011) Fast large-sample goodness-of-fit tests for copulas. Statistica Sinica 21(2):841

    Article  Google Scholar 

  • Koutsoyiannis D (2010) HESS opinions “A random walk on water”. Hydrol Earth Syst Sci 14(3):585–601

    Article  Google Scholar 

  • Koutsoyiannis D (2015) Generic and parsimonious stochastic modelling for hydrology and beyond. Hydrol Sci J. doi:10.1080/02626667.2015.1016950

  • Koutsoyiannis D, Montanari A (2007) Statistical analysis of hydroclimatic time series: uncertainty and insights. Water Resour Res 43(5):W05429

    Article  Google Scholar 

  • Koutsoyiannis D, Montanari A (2014) Negligent killing of scientific concepts: the stationarity case. Hydrological Sciences Journal. doi:10.1080/02626667.2014.959959

    Google Scholar 

  • Leonard M, Westra S, Phatak A, Lambert M, van den Hurk B, McInnes K, Risbey J, Schuster S, Jakob D, Stafford-Smith M (2014) A compound event framework for understanding extreme impacts. Wiley Interdiscip Rev: Clim Change 5(1):113–128

    Google Scholar 

  • Ljung GM, Box GEP (1978) On a measure of lack of fit in time series models. Biometrika 65(2):297–303

    Article  Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econometrica 13(3):245–259

    Article  Google Scholar 

  • Mao Y, Nijssen B, Lettenmaier DP (2015) Is climate change implicated in the 2013–2014 California drought? A hydrologic perspect. Geophys Res Lett. doi:10.1002/2015GL063456

  • McCabe GJ, Wolock DM (2002) Trends and temperature sensitivity of moisture conditions in the conterminous United States. Clim Res 20(1):19–29

    Article  Google Scholar 

  • Miller AJ, Cayan DR, Barnett TP, Graham NE, Oberhuber JM (1994) The 1976–77 climate shift of the Pacific Ocean. Oceanography 7(1):21–26

    Article  Google Scholar 

  • Montanari A (2012) Hydrology of the Po river: looking for changing patterns in river discharge. Hydrol Earth Syst Sci 16(10):3739–3747

    Article  Google Scholar 

  • Montanari A, Koutsoyiannis D (2014) Modeling and mitigating natural hazards: stationarity is immortal!. Water Res Res 50(12):9748–9756

    Article  Google Scholar 

  • Nelsen RB (2006) An introduction to Copulas, 2nd edn. Springer, New York

    Google Scholar 

  • Peterson TC, Heim RR Jr., Hirsch R, Kaiser DP, Brooks H, Diffenbaugh NS, Dole RM, Giovannettone JP, Guirguis K, Karl TR, Katz RW, Kunkel K, Lettenmaier D, McCabe GJ, Paciorek CJ,ad Siegfried Schubert KRR, Silva VBS, Stewart BC, Vecchia AV, Villarini G, Vose RS, Walsh J, Wehner M, Wolock D, Wolter K, Woodhouse CA, Wuebbles D,(2013) Monitoring and understanding changes in heat waves, cold waves, floods, and droughts in the United States: state of knowledge. Bull Am Meteorol Soc 94(6):821–834

  • Pettitt AN (1979) A non-parametric approach to the change-point problem. J R Stat Soc Ser C (Applied Statistics) 28(2):126–135

    Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. URL http://www.R-project.org/, ISBN 3-900051-07-0

  • Rougé C, Ge Y, Cai X (2013) Detecting gradual and abrupt changes in hydrological records. Adv Water Resour 53:33–44

    Article  Google Scholar 

  • Salvadori G, De Michele C (2004) Frequency analysis via copulas: Theoretical aspects and applications to hydrological events. Water Resour Res 40(12):WR003133

    Article  Google Scholar 

  • Salvadori G, De Michele C (2006) Statistical characterization of temporal structure of storms. Adv Water Resour 29(6):827–842

    Article  Google Scholar 

  • Salvadori G, Michele CD (2015) Multivariate real-time assessment of droughts via copula-based multi-site Hazard Trajectories and fans. J Hydrol 526:101–115

    Article  Google Scholar 

  • Salvadori G, De Michele C, Kottegoda NT, Rosso R (2007) Extremes in nature: an approach using copulas. Springer, Berlin

    Google Scholar 

  • Salvadori G, Durante F, De Michele C (2013) Multivariate return period calculation via survival functions. Water Resour Res 49(4):2308–2311

    Article  Google Scholar 

  • Salvadori G, Tomasicchio G, D’Alessandro F (2014) Practical guidelines for multivariate analysis and design in coastal and off-shore engineering. Coast Eng 88:1–14

    Article  Google Scholar 

  • Salvadori G, Durante F, Tomasicchio G, D’Alessandro F (2015) Practical guidelines for the multivariate assessment of the structural risk in coastal and off-shore engineering. Coast Eng 95:77–83

    Article  Google Scholar 

  • Schepsmeier U, Brechmann EC (2012) CDVine: Statistical inference of C- and D-vine copulas. URL http://CRAN.R-project.org/package=CDVine, R package version 1.1-9

  • Serinaldi F (2009) Assessing the applicability of fractional order statistics for computing confidence intervals for extreme quantiles. J Hydrol 376(3–4):528–541

    Article  Google Scholar 

  • Serinaldi F (2010) Use and misuse of some Hurst parameter estimators applied to stationary and non-stationary financial time series. Physica A: Stat Mech Appl 389(14):2770–2781

    Article  Google Scholar 

  • Serinaldi F (2013) An uncertain journey around the tails of multivariate hydrological distributions. Water Resour Res 49(10):6527–6547

    Article  Google Scholar 

  • Serinaldi F (2015) Dismissing return periods!. Stoch Environ Res Risk Assess 29(4):1179–1189

    Article  Google Scholar 

  • Serinaldi F, Cuomo G (2011) Characterizing impulsive wave-in-deck loads on coastal bridges by probabilistic models of impact maxima and rise times. Coast Eng 58(9):908–926

    Article  Google Scholar 

  • Serinaldi F, Grimaldi S (2007) Fully nested 3-copula: procedure and application on hydrological data. J Hydrol Eng 12(4):420–430

    Article  Google Scholar 

  • Serinaldi F, Kilsby CG (2013) The intrinsic dependence structure of peak, volume, duration, and average intensity of hyetographs and hydrographs. Water Resour Res 49(6):3423–3442

    Article  Google Scholar 

  • Serinaldi F, Kilsby CG (2015a) The importance of prewhitening in change point analysis under persistence. Stoch Environ Res Risk Assess. doi:10.1007/s00477-015-1041-5

  • Serinaldi F, Kilsby CG (2015b) Stationarity is undead: uncertainty dominates the distribution of extremes. Adv in Water Resour 77:17–36

    Article  Google Scholar 

  • Serinaldi F, Bonaccorso B, Cancelliere A, Grimaldi S (2009) Probabilistic characterization of drought properties through copulas. Phys Chem Earth, Parts A/B/C 34(10–12):596–605

    Article  Google Scholar 

  • Serinaldi F, Bárdossy A, Kilsby CG (2015) Upper tail dependence in rainfall extremes: would we know it if we saw it? Stoch Environ Res Risk Assess 29(4):1211–1233

    Article  Google Scholar 

  • Shiau JT (2006) Fitting drought duration and severity with two-dimensional copulas. Water Resour Manag 20(5):795–815

    Article  Google Scholar 

  • Shiau JT, Wang HY, Tsai CT (2006) Bivariate frequency analysis of floods using copulas. J Am Water Resour Assoc 42(6):1549–1564

    Article  Google Scholar 

  • Sklar A (1959) Fonction de répartition à n dimensions et leurs marges. Publications de l’Institut de Statistique de L’Université de Paris 8:229–231

    Google Scholar 

  • Taqqu MS, Teverovsky V, Willinger W (1995) Estimators for long-range dependence: an empirical study. Fractals 3(4):785–798

    Article  Google Scholar 

  • Tsonis AA, Swanson K, Kravtsov S (2007) A new dynamical mechanism for major climate shifts. Geophys Res Lett 34(13):L13705

    Article  Google Scholar 

  • Urbanek S, Horner J (2011) Cairo: R graphics device using cairo graphics library for creating high-quality bitmap (PNG, JPEG, TIFF), vector (PDF, SVG, PostScript) and display (X11 and Win32) output. URL http://CRAN.R-project.org/package=Cairo, R package version 1.5-1

  • Villarini G, Serinaldi F, Smith JA, Krajewski WF (2009) On the stationarity of annual flood peaks in the continental United States during the 20th century. Water Resour Res 45(8):W08417

    Article  Google Scholar 

  • Volpi E, Fiori A (2012) Design event selection in bivariate hydrological frequency analysis. Hydrol Sci J 57(8):1506–1515

    Article  Google Scholar 

  • Volpi E, Fiori A (2014) Hydraulic structures subject to bivariate hydrological loads: return period, design, and risk assessment. Water Resour Res 50(2):885–897

    Article  Google Scholar 

  • Vose RS, Applequist S, Squires M, Durre I, Menne MJ, Williams CN Jr, Fenimore C, Gleason K, Arndt D (2014) Improved historical temperature and precipitation time series for U.S. climate divisions. J Appl Meteorol Climatol 53(5):1232–1251

    Article  Google Scholar 

  • Wand M (2012) KernSmooth: Functions for kernel smoothing for Wand & Jones (1995). URL http://CRAN.R-project.org/package=KernSmooth, R package version 2.23-8

  • Wilks D (2006) On “field significance” and the false discovery rate. J Appl Meteorol Climatol 45(9):1181–1189

    Article  Google Scholar 

  • Wolock DM, McCabe GJ (1999) Explaining spatial variability in mean annual runoff in the conterminous United States. Clim Res 11(2):149–159

    Article  Google Scholar 

  • Yan J (2007) Enjoy the joy of copulas: with a package copula. J Stat Softw 21(4):1–21, URL http://www.jstatsoft.org/v21/i04/

  • Yue S, Rasmussen P (2002) Bivariate frequency analysis: discussion of some useful concepts in hydrological application. Hydrol Process 16:2881–2898

    Article  Google Scholar 

  • Zhang Q, Xiao M, Singh VP (2015) Uncertainty evaluation of copula analysis of hydrological droughts in the East River basin, China. Global Planet Change 129:1–9

    Article  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the Willis Research Network. The data used in this study are obtained from the web site: http://www. ncdc.noaa.gov/cag/time-series/us. The author wishes to thank three anonymous reviewers for their remarks and constructive criticisms, and Prof. M. Bayani Cardenas (The University of Texas at Austin, US) for his useful comments on an earlier version of this paper. The analyses were performed in R (R Core Team 2013) by using the contributed packages Cairo (Urbanek and Horner 2011), CDVine (Schepsmeier and Brechmann 2012), copula (Yan 2007; Kojadinovic and Yan 2010), hdrcde (Hyndman et al. 2012), HH (Heiberger 2012), KernSmooth (Wand 2012), and lmom (Hosking 2014). The authors and maintainers of this software are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Serinaldi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2667 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serinaldi, F. Can we tell more than we can know? The limits of bivariate drought analyses in the United States. Stoch Environ Res Risk Assess 30, 1691–1704 (2016). https://doi.org/10.1007/s00477-015-1124-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-015-1124-3

Keywords

Navigation