Skip to main content
Log in

Spatiotemporal pattern of the global sensitivity of the reference evapotranspiration to climatic variables in recent five decades over China

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

The impact of climatic variables on reference evapotranspiration (ET0) has been a critical issue for ages. The sensitivities of the FAO56 Penman–Monteith ET0 equation to climate variables in 668 stations of China from 1960 to 2009 were studied using a global sensitivity analysis method, the extended Fourier amplitude sensitivity test. The results showed a large degree of spatiotemporal variation in the sensitivity of ET0 to incoming solar radiation, temperature (T), relative humidity (RH), and wind speed, with the averaged first-order sensitivity index (Si) value of 0.41, 0.18, 0.25, and 0.15, respectively. At annul scale, solar radiation was the most sensitive parameter in southern part of China with the mean Si value reached 0.66, while T and RH were the most sensitive parameter in northeast and north China, both with mean Si of 0.37. In northwest China, the mean Si values of incoming solar radiation, T, and wind speed, were relatively constant around 0.25, while the value of RH trended to be slightly higher than other parameters (=0.28). In Tibetan Plateau, solar radiation and T were the two most sensitive parameters, with averaged Si values of 0.32 and 0.31, respectively. The spatial variation of sensitivity varied seasonally, and was closely related to the geographic location of the stations. In general, stations in the low latitude were more sensitive to solar radiation and less sensitive to T than stations in the high latitude. The merit of the sensitivity results obtained in the current study was that it estimates which climatic parameter variation has the greatest impact on ET0 variation across the entire range of the climatic parameters rather than merely based on their median values, and it is helpful to better understand the potential effects of climate changes on the water management in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ali MH, Adham AKM, Rahman MM, Islam AKMR (2009) Sensitivity of Penman–Monteith estimates of reference evapotranspiration to errors in input climatic data. J Agrometeorol 11:1–8

    Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration—guidelines for computing crop water requirements—FAO irrigation and drainage paper 56, FAO, Rome

    Google Scholar 

  • Bandyopadhyay A, Bhadra A, Raghuwanshi N, Singh R (2009) Temporal trends in estimates of reference evapotranspiration over India. J Hydrol Eng 14:508–515. doi:10.1061/(ASCE)HE.1943-5584.0000006

    Article  Google Scholar 

  • Bormann H (2010) Sensitivity analysis of 18 different potential evapotranspiration models to observed climatic change at German climate stations. Clim Change 104:728–753. doi:10.1007/s10584-010-9869-7

    Google Scholar 

  • Brutsaert W, Parlange MB (1998) Hydrologic cycle explains the evaporation paradox. Nature 396:30

    Article  CAS  Google Scholar 

  • Chen RS, Lu SH, Kang ES, Yang JP, Ji XB (2006) Estimating daily global radiation using two types of revised models in China. Energy Convers Manag 47:865–878. doi:10.1016/j.enconman.2005.06.015

    Article  Google Scholar 

  • Ciriello V, Federico V, Riva M, Cadini F, Sanctis J, Zio E, Guadagnini A (2013) Polynomial chaos expansion for global sensitivity analysis applied to a model of radionuclide migration in a randomly heterogeneous aquifer. Stoch Environ Res Risk Assess 27:945–954. doi:10.1007/s00477-012-0616-7

    Article  Google Scholar 

  • DeJonge KC, Ahmadi Mm, Ascough JC II, Kinzli KD (2015) Sensitivity analysis of reference evapotranspiration to sensor accuracy. Comput Electron Agric 110:176–186. doi:10.1016/j.compag.2014.11.013

    Article  Google Scholar 

  • Estevez J, Gavilan P, Berengena J (2009) Sensitivity analysis of a Penman–Monteith type equation to estimate reference evapotranspiration in southern Spain. Hydrol Process 23:3342–3353. doi:10.1002/hyp.7439

    Article  Google Scholar 

  • Feng J, Yan D, Li C, Yu F, Zhang C (2014) Assessing the impact of climatic factors on potential evapotranspiration in droughts in North China. Quat Int 336:6–12

    Article  Google Scholar 

  • Gong L, Xu C-y, Chen D, Halldin S, Chen YD (2006) Sensitivity of the Penman–Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) Basin. J Hydrol 329:620–629. doi:10.1016/j.jhydrol.2006.03.027

    Article  Google Scholar 

  • Hamby DM (1995) A comparison of sensitivity analysis techniques. Health Phys 68(2):195–204. doi:10.1097/00004032-199502000-00005

    Article  CAS  Google Scholar 

  • Huo Z, Dai X, Feng S, Kang S, Huang G (2013) Effect of climate change on reference evapotranspiration and aridity index in arid region of China. J Hydrol 492:24–34. doi:10.1016/j.jhydrol.2013.04.011

    Article  Google Scholar 

  • Hupet F, Vanclooster M (2001) Effect of the sampling frequency of meteorological variables on the estimation of the reference evapotranspiration. J Hydrol 243:192–204. doi:10.1016/s0022-1694(00)00413-3

    Article  Google Scholar 

  • Iooss B, Lematre P (2015) A review on global sensitivity analysis methods. In: Meloni C, Dellino G (eds) Uncertainty management in simulation–optimization of complex systems: algorithms and applications. Springer, New York

  • Irmak S, Payero JO, Martin DL, Irmak A, Howell TA (2006) Sensitivity analyses and sensitivity coefficients of standardized daily ASCE-Penman–Monteith equation. J Irrig Drain Eng ASCE 132:564–578. doi:10.1061/(asce)0733-9437(2006)132:6(564)

    Article  Google Scholar 

  • Jhajharia D, Dinpashoh Y, Kahya E, Singh VP, Fakheri-Fard A (2012) Trends in reference evapotranspiration in the humid region of northeast India. Hydrol Process 26:421–435. doi:10.1002/hyp.8140

    Article  Google Scholar 

  • Katerji N, Rana G (2011) Crop reference evapotranspiration: a discussion of the concept, analysis of the process and validation. Water Resour Manag 25:1581–1600. doi:10.1007/s11269-010-9762-1

    Article  Google Scholar 

  • King DM, Perera BJC (2012) Use of the extended Fourier amplitude sensitivity test to assess the importance of input variables on urban water supply system yield—a case study. In: IWA world congress on water, climate and energy 2012, Dublin, Ireland, 13–18 May 2012

  • Kitsara G, Papaioannou G, Papathanasiou A, Retalis A (2013) Dimming/brightening in Athens: trends in sunshine duration, cloud cover and reference evapotranspiration. Water Resour Manag 27:1623–1633. doi:10.1007/s11269-012-0229-4

    Article  Google Scholar 

  • Kousari MR, Ahani H (2012) An investigation on reference crop evapotranspiration trend from 1975 to 2005 in Iran. Int J Climatol 32:2387–2402. doi:10.1002/joc.3404

    Article  Google Scholar 

  • Ley TW, Hill RW, Jensen DT (1994a) Errors in Penman–Wright alfalfa reference evapotranspiration estimates. I. Model sensitivity analyses. Trans ASAE 37:1853–1861

    Article  Google Scholar 

  • Ley TW, Hill RW, Jensen DT (1994b) Errors in Penman–Wright alfalfa reference evapotranspiration estimates. II. Effects of weather sensor measurement variability. Trans ASAE 37:1863–1870

    Article  Google Scholar 

  • Liang L, Li L, Zhang L, Li J, Li B (2008) Sensitivity of Penman–Monteith reference crop evapotranspiration in Tao’er River Basin of northeastern China. Chin Geogr Sci 18:340–347. doi:10.1007/s11769-008-0340-x

    Article  Google Scholar 

  • Liu B, Xu M, Henderson M, Gong W (2004) A spatial analysis of pan evaporation trends in China, 1955–2000. J Geophys Res Atmos 109:D15102. doi:10.1029/2004JD004511

    Article  Google Scholar 

  • Liu Q, Yang Z, Cui B, Sun T (2010) The temporal trends of reference evapotranspiration and its sensitivity to key meteorological variables in the Yellow River Basin, China. Hydrol Process 24:2171–2181. doi:10.1002/hyp.7649

    Google Scholar 

  • Liu Y, Zhuang Q, Chen M, Pan Z, Tchebakova N, Sokolov A, Kicklighter D, Melillo J, Sirin A, Zhou G, He Y, Chen J, Bowling L, Miralles D, Parfenova E (2013) Response of evapotranspiration and water availability to changing climate and land cover on the Mongolian Plateau during the 21st century. Glob Planet Change 108:85–99. doi:10.1016/j.gloplacha.2013.06,008

    Article  Google Scholar 

  • Liu H, Li Y, Josef T, Zhang R, Huang G (2014a) Quantitative estimation of climate change effects on potential evapotranspiration in Beijing during 1951–2010. J Geogr Sci 24:93–112. doi:10.1007/s11442-014-1075-5

    Article  Google Scholar 

  • Liu H, Zhang R, Li Y (2014b) Sensitivity analysis of reference evapotranspiration (ET0) to climate change in Beijing, China. Desalin Water Treat 52(13–15):2799–2804. doi:10.1080/19443994.2013.862030

    Article  Google Scholar 

  • Lu Y, Mohanty S (2001) Sensitivity analysis of a complex, proposed geologic waste disposal system using the Fourier Amplitude Sensitivity Test method. Reliab Eng Syst Saf 72:275–291

    Article  Google Scholar 

  • Marino S, Hogue IB, Ray CJ, Kirschner DE (2008) A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theor Biol 254:178–196. doi:10.1016/j.jtbi.2008.04.011

    Article  Google Scholar 

  • McCuen RH (1974) A sensitivity and error analysis cf procedures used for estimating evaporation. J Am Water Resour Assoc 10:486–497. doi:10.1111/j.1752-1688.1974.tb00590.x

    Article  Google Scholar 

  • McVicar TR, Van Niel TG, Li L, Hutchinson MF, Mu X, Liu Z (2007) Spatially distributing monthly reference evapotranspiration and pan evaporation considering topographic influences. J Hydrol 338:196–220. doi:10.1016/j.jhydrol.2007.02.018

    Article  Google Scholar 

  • McVicar TR, Van Niel TG, Li LT, Roderick ML, Rayner DP, Ricciardulli L, Donohue RJ (2008) Wind speed climatology and trends for Australia, 1975–2006: capturing the stilling phenomenon and comparison with near-surface reanalysis output. Geophys Res Lett 35:L20403. doi:10.1029/2008GL035627

    Article  Google Scholar 

  • Meyer SJ, Hubbard KG, Wilhite DA (1989) Estimating potential evapotranspiration: the effect of random and systematic errors. Agric For Meteorol 46:285–296. doi:10.1016/0168-1923(89)90032-4

    Article  Google Scholar 

  • Mohammad V, Asqhar MA (2012) Sensitive analysis of optimized infiltration parameters in SWDC model. Adv Environ Biol 6(9):2574

    Google Scholar 

  • Nam WH, Hong EM, Choi JY (2013) Has climate change already affected the spatial distribution and temporal trends of reference evapotranspiration in South Korea? Agric Water Manag 150:129–138. doi:10.1016/j.agwat.2014.11.019

    Article  Google Scholar 

  • Pianosi F, Wagener T (2015) A simple and efficient method for global sensitivity analysis based on cumulative distribution functions. Environ Model Softw 67:1–11. doi:10.1016/j.envsoft.2015.01.004

    Article  Google Scholar 

  • Piper BS (1989) Sensitivity of Penman estimates of evaporation to errors in input data. Agric Water Manag 15:279–300. doi:10.1016/0378-3774(89)90021-8

    Article  Google Scholar 

  • Porter D, Gowda P, Marek T, Howell T, Moorhead J, Irmak S (2012) Sensitivity of grass- and alfalfa-reference evapotranspiration to weather station sensor accuracy. Appl Eng Agric 28:543–549

    Article  Google Scholar 

  • Rahimi S, Sefidkouhi MAG, Raeini-Sarjaza M, Valipour M (2015) Estimation of actual evapotranspiration by using MODIS images (a case study: Tajan catchment). Arch Agron Soil Sci 61(5):695–709. doi:10.1080/03650340.2014.944904

    Article  Google Scholar 

  • Rana G, Katerji N (1998) A measurement based sensitivity analysis of the Penman–Monteith actual evapotranspiration model for crops of different height and in contrasting water status. Theor Appl Climatol 60:141–149. doi:10.1007/s007040050039

    Article  Google Scholar 

  • Ratto M, Pagano A, Young P (2007) State dependent parameter metamodelling and sensitivity analysis. Comput Phys Commun 177:863–876. doi:10.1016/j.cpc.2007.07.011

    Article  CAS  Google Scholar 

  • Roderick ML, Farquhar GD (2002) The cause of decreased pan evaporation over the past 50 years. Science 298:1410–1411. doi:10.1126/science.1075390-a

    CAS  Google Scholar 

  • Sabziparvar AA, Mirmasoudi SH, Tabari H, Nazemosadat MJ, Maryanaji Z (2011) ENSO teleconnection impacts on reference evapotranspiration variability in some warm climates of Iran. Int J Climatol 31:1710–1723. doi:10.1002/joc.2187

    Google Scholar 

  • Saltelli A, Annoni P (2010) How to avoid a perfunctory sensitivity analysis. Environ Model Softw 25:1508–1517. doi:10.1016/j.envsoft.2010.04.012

    Article  Google Scholar 

  • Saltelli A, Tarantola S, Chan KPS (1999) A quantitative model-independent method for global sensitivity analysis of model output. Technometrics 41:39–56. doi:10.2307/1270993

    Article  Google Scholar 

  • Saltelli A, Chan K, Scott EM (2000) Sensitivity analysis. Wiley series in probability and statistics. Wiley, Chichester

    Google Scholar 

  • Saltelli A, Tarantola S, Campolongo F, Ratto M (2004) Sensitivity analysis in practice: a guide to assessing scientific models. Wiley, Chichester

    Google Scholar 

  • Saxton KE (1975) Sensitivity analyses of the combination evapotranspiration equation. Agric Meteorol 15:343–353. doi:10.1016/0002-1571(75)90031-X

    Article  Google Scholar 

  • Silva B, da Silva V, de Azevedo P, Farias A (2011) Sensitivity analysis of methods for estimating reference evapotranspiration and sugarcane evapotranspiration. Rev Bras Eng Agric Ambient 15:1046–1053

    Article  Google Scholar 

  • Tabari H, Talaee PH (2014) Sensitivity of evapotranspiration to climate change in different climates. Glob Planet Change 115:16–23. doi:10.1016/j.gloplacha.2014.01.006

    Article  Google Scholar 

  • Tang B, Tong L, Kang S, Zhang L (2011) Impacts of climate variability on reference evapotranspiration over 58 years in the Haihe River Basin of north China. Agric Water Manag 98:1660–1670. doi:10.1016/j.agwat.2011.06.006

    Article  Google Scholar 

  • Tarantola S, Giglioli N, Jesinghaus J, Saltelli A (2002) Can global sensitivity analysis steer the implementation of models for environmental assessments and decision-making? Stoch Environ Res Risk Assess 16:63–76. doi:10.1007/s00477-001-0085-x

    Article  Google Scholar 

  • Valipour M (2014a) Investigation of Valiantzas’ evapotranspiration equation in Iran. Theor Appl Climatol. doi:10.1007/s00704-014-1240-x

    Google Scholar 

  • Valipour M (2014b) Use of average data of 181 synoptic stations for estimation of reference crop evapotranspiration by temperature-based methods. Water Resour Manag 28(12):4237–4255. doi:10.1007/s11269-014-0741-9

    Article  Google Scholar 

  • Valipour M (2014c) Analysis of potential evapotranspiration using limited weather data. Appl Water Sci. doi:10.1007/s13201-014-0234-2

    Google Scholar 

  • Valipour M (2014d) Application of new mass transfer formulae for computation of evapotranspiration. J Appl Water Eng Res 2(1):33–46. doi:10.1080/23249676.2014.923790

    Article  Google Scholar 

  • Valipour M (2014e) Temperature analysis of reference evapotranspiration models. Meteorol Appl. doi:10.1002/met.1465

    Google Scholar 

  • Valipour M (2015a) Comparative evaluation of radiation-based methods for estimation of potential evapotranspiration. J Hydrol Eng 20(5):04014068. doi:10.1061/(ASCE)HE.1943-5584.0001066

  • Valipour M (2015b) Evaluation of radiation methods to study potential evapotranspiration of 31 provinces. Meteorol Atmos Phys 127(3):289–303. doi:10.1007/s00703-014-0351-3

    Article  Google Scholar 

  • Valipour M (2015c) Study of different climatic conditions to assess the role of solar radiation in reference crop evapotranspiration equations. Arch Agron Soil Sci 61(5):679–694. doi:10.1080/03650340.2014.941823

    Article  Google Scholar 

  • Valipour M (2015d) Importance of solar radiation, temperature, relative humidity, and wind speed for calculation of reference evapotranspiration. Arch Agron Soil Sci 61(5):239–255. doi:10.1080/03650340.2014.925107

    Google Scholar 

  • Vicente-Serrano SM, Azorin-Molina C, Sanchez-Lorenzo A, Revuelto J, Morán-Tejeda E, López-Moreno JI, Espejo F (2014) Sensitivity of reference evapotranspiration to changes in meteorological parameters in Spain (1961–2011). Water Resour Res 50:8458–8480. doi:10.1002/2014WR015427

    Article  Google Scholar 

  • Volkova E, Iooss B, Van Dorpe F (2008) Global sensitivity analysis for a numerical model of radionuclide migration from the RRC “Kurchatov Institute” radwaste disposal site. Stoch Environ Res Risk Assess 22:17–31. doi:10.1007/s00477-006-0093-y

    Article  Google Scholar 

  • Wainwright HM, Finsterle S, Jung Y, Zhou Q, Birkholzer JT (2014) Making sense of global sensitivity analysis. Comput Geosci 65:84–94. doi:10.1016/j.cageo.2013.06.006

    Article  Google Scholar 

  • Wild M (2009) Global dimming and brightening: a review. J Geophys Res Atmos. doi:10.1029/2008jd011470

    Google Scholar 

  • Xu C, Gertner GZ (2008) A general first-order global sensitivity analysis method. Reliab Eng Syst Saf 93(7):1060–1071. doi:10.1016/j.ress.2007.04.001

    Article  Google Scholar 

  • Xu C-y, Gong L, Jiang T, Chen D, Singh VP (2006a) Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. J Hydrol 327:81–93. doi:10.1016/j.jhydrol.2005.11.029

    Article  Google Scholar 

  • Xu M, Chang C-P, Fu C, Qi Y, Robock A, Robinson D, Zhang H-m (2006b) Steady decline of east Asian monsoon winds, 1969–2000: evidence from direct ground measurements of wind speed. J Geophys Res Atmos 111:D24111. doi:10.1029/2006JD007337

    Article  Google Scholar 

  • Xu YP, Pan S, Fu G, Tian Y, Zhang X (2014) Future potential evapotranspiration changes and contribution analysis in Zhejiang Province, East China. J Geophys Res Atmos 118:2174–2192. doi:10.1002/2013JD021245

    Article  Google Scholar 

  • Yang JY, Liu Q, Mei XR, Yan CR, Ju H, Xu JW (2013) Spatiotemporal characteristics of reference evapotranspiration and its sensitivity coefficients to climate factors in Huang–Huai–Hai Plain, China. J Integr Agric 12(2):2280–2291. doi:10.1016/S2095-3119(13)60561-4

    Article  Google Scholar 

  • Yu PS, Yang TC, Chou CC (2002) Effects of climate change on evapotranspiration from paddy fields in southern Taiwan. Clim Change 54:165–179. doi:10.1023/A:1015764831165

    Article  Google Scholar 

  • Zhang YL, Qin BQ, Chen WM (2004) Analysis of 40 year records of solar radiation data in Shanghai, Nanjing and Hangzhou in Eastern China. Theor Appl Climatol 78:217–227. doi:10.1007/s00704-003-0030-7

    Article  CAS  Google Scholar 

  • Zhang X, Kang S, Zhang L, Liu J (2010) Spatial variation of climatology monthly crop reference evapotranspiration and sensitivity coefficients in Shiyang River Basin of northwest China. Agric Water Manag 97:1506–1516. doi:10.1016/j.agwat.2010.05.004

    Article  Google Scholar 

  • Zhang Q, Xu C-Y, Chen X (2011a) Reference evapotranspiration changes in China: natural processes or human influences? Theor Appl Climatol 103:479–488. doi:10.1007/s00704-010-0315-6

    Article  Google Scholar 

  • Zhang S, Liu S, Mo X, Shu C, Sun Y, Zhang C (2011b) Assessing the impact of climate change on potential evapotranspiration in Aksu River Basin. J Geogr Sci 21:609–620. doi:10.1007/s11442-011-0867-0

    Article  Google Scholar 

  • Zheng C, Wang Q (2014) Spatiotemporal variations of reference evapotranspiration in recent five decades in the arid land of Northwestern China. Hydrol Process 28(25):6124–6134. doi:10.1002/hyp.10109

    Article  Google Scholar 

Download references

Acknowledgments

We thank Suixa Liu for the review of the paper and Pingheng Li for the help on the sensitivity analysis. This study was supported by the JSPS Project (Grant No. 25302001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Wang.

Ethics declarations

Conflict of interest

The authors confirm that there is no conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, C., Wang, Q. Spatiotemporal pattern of the global sensitivity of the reference evapotranspiration to climatic variables in recent five decades over China. Stoch Environ Res Risk Assess 29, 1937–1947 (2015). https://doi.org/10.1007/s00477-015-1120-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-015-1120-7

Keywords

Navigation