Skip to main content

Advertisement

Log in

Unscented importance sampling for parameter calibration of carbon sequestration systems

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

A Bayesian importance sampling method is developed to efficiently and accurately calibrate the parameters of non-linear and non-Gaussian system models. The unscented importance sampling (UIS) consists of two stages. The first stage uses the latest monitoring data to generate a Gaussian approximation of the true posterior distribution of the uncertain parameters and utilizes the measurement update stage of the unscented Kalman filter (UKF) to approximate the posterior. The second stage of UIS uses a mixture of approximate posterior computed in the first stage and a heavy tailed distribution as the proposal distribution for Bayesian importance sampling. UIS is repeated whenever new monitoring data becomes available. Two case studies were developed to study the UIS method and to compare it UKF and importance sampling (IS) methods: a non-linear analytical system model and synthesized CO2 injection model using a numerical multi-phase flow simulator. In analytical case study, it is shown that UIS is more accurate than both UKF and traditional IS with static proposal and the relative accuracy of the UIS over traditional IS increases with dimensionality of the parameter space. The higher accuracy of UIS compared to UKF and traditional IS with static proposal is also shown in the CO2 injection case study. It is also shown that increasing number of samples and a defensive mixture distribution with a mixture ratio between 0.1 and 0.25 enhances the performance of UIS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. For a discrete parameter space, all integrals will be replaced by summation.

References

  • Aanonsen SI, Reynolds AC (2009) The ensemble Kalman filter in reservoir engineering–a review. SPE Journal 14(3):393–412

    Article  Google Scholar 

  • Alshuhail A, Lawton D, Isaac H (2009) Seismic characterizations of the Nisku formation. University of Calgary, Calgary

    Google Scholar 

  • Ambadan JT, Tang Y (2009) Sigma-point Kalman filter data assimilation methods for strongly nonlinear systems. J Atmos Sci 66:261–285

    Article  Google Scholar 

  • Arulampalam MS, Maskell S, Gordon N, Clapp T (2002) A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Trans Signal Process 50(2):174–188

    Article  Google Scholar 

  • Bhowmik S, Mantilla CA, Srinivasan S (2011) Tracking CO2 plume migration during geologic sequestration using a probabilistic history matching approach. Stoch Environ Res Risk Assess 25:1085–1090

    Article  Google Scholar 

  • Cappé O, Guillin A, Marin JM, Robert CP (2004) Population Monte Carlo. J Comput Graph Stat 13(4):907–929

    Article  Google Scholar 

  • Cappé O, Douc R, Guillin A, Marin JMRCP (2008) Adaptive importance sampling in general mixture classes. Stat Comput 18(4):447–459

    Article  Google Scholar 

  • Chadwick R et al (2004) 4D seismic imaging of an injected CO2 plume at the Sleipner Field, Central North Sea. In: Davies R (ed) 3D Seismic technology: application to the exploration of sedimentary basins. Geological Society, London, pp 311–320

  • Chen Z (2003) Bayesian filtering: from Kalman filters to particle filters, and beyond. Statistics 182:1–69

  • Douc R, Guillin A, Marin JM, Robert CP (2007) Minimum variance importance sampling via population Monte Carlo. ESAIM: Probab Stat 11:427–447

  • Espinet AJ, Shoemaker CA (2013) Comparison of optimization algorithms for parameter estimation of multiphase flow models with application to geological carbon sequestration. Adv Water Resour 54:133–148

    Article  Google Scholar 

  • Evensen G (1994) Sequential data assimilation with nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J Geophys Res 99(C5):143–162

    Google Scholar 

  • Freifeld B et al (2005) The U-Tube: a novel system for acquiring borehole fluid samples from a deep geologic CO2 sequestration experiment. J Geophys Res 110(B10)

  • Hall B (2012). Bayesian inference, Cran. R-project, LaplacesDemon Package. http://cran.rproject.org/web/packages/LaplacesDemon/vignettes/BayesianInference.pdf

  • Hesterberg T (1995) Weighted average importance sampling and defensive mixture distributions. Stanford University, Stanford

    Google Scholar 

  • Hongjun Z, Xinwei L, Yanfang C, Xiaoliang Z (2010) Sensitivity analysis of CO2 sequestration in saline aquifers. Petroleum Science 7:372–378

    Article  Google Scholar 

  • Houtekamer PL et al (2005) Atmospheric Data Assimilation with an Ensemble Kalman Filter: results with Real Observations. Mon Weather Rev 133(3):604–620

    Article  Google Scholar 

  • Hoversten G et al (2004) Cross-well electromagnetic seismic imaging: an examination of coincident surveys at a steam flood project. Geophysics 69:406–414

    Article  Google Scholar 

  • Johnson J, White D (2012). History matching and performance validation. In: Best practices for validating CO2 geological storage: observations and guidance from the IEAGHG Weyburn-Midale CO2 Monitoring and Storage Project, vol 254. Geoscience Publishing, Edmonton, p 215

  • Julier S, Uhlmann JK (1996) A general method for approximating nonlinear transformations of probability distributions. University of Oxford, Oxford

  • Kaipio JP, Somersalo E (2007) Statistical inverse problems: discretization, model. J Comput Appl Math 198(2):493–504

    Article  Google Scholar 

  • Kalman R (1960) A new approach to linear filtering and predicition problems. J Fluids Eng 82:35–45

  • Kim IS (2011) Large scale data assimilation with application to the Ionosphere–thermosphere, vol l. Proquest, Umi Dissertation Publishing, Ann Arbor

  • Kopp A et al (2010) A contribution to risk analysis for leakage through abandoned wells in geological CO2 storage. Adv Water Resour 33:867–879

    Article  CAS  Google Scholar 

  • Lavoie R, Keith D (2010) Executive summary of Wabamun Area CO2 Sequestration Project (WASP). University of Calgary, Calgary

    Google Scholar 

  • Lawton D (2010) Carbon capture and storage: opportunities and challenges for geophysics. CSEG Rec 35(6):7–10

    Google Scholar 

  • Lawton D et al (2010) Recommendations for injection and storage monitoring, Wabamun Area CO2 Sequestration Project (WASP). University of Calgary, Calgary

  • Leisenring M, Moradkhani H (2011) Snow water equivalent prediction using Bayesian data assimilation methods. Stoch Environ Res Risk Assess 25(2):253–270

    Article  Google Scholar 

  • Li Z, Fall M (2013) A modeling tool for assessment of potential groundwater contamination in response to CO2 leakage from geological disposal of CO2. In: 3rd Climate change technology conference, CCTC 2013, Montreal Canada. Paper no. 156972894

  • Li X, Cardiff MA, Kitanidis PK (2004) Parameter estimation in nonlinear environmental problems. Stoch Environ Res Risk Assess 24(7):1003–1022

    Article  Google Scholar 

  • Liu X, Cardif MA, Kitanidis PK (2010) Parameter estimation in nonlinear environmental problems. Stoch Env Res Risk Assess 24(7):1003–1022

    Article  Google Scholar 

  • Marshall A (1956) The use of multi-stage sampling schemes in Monte Carlo computations. Wiley, New York, pp 123–140

    Google Scholar 

  • Mesbah A, Huesmana A, Kramerb H, Van den Hofa P (2011) A comparison of nonlinear observers for output feedback model-based control of seeded batch crystallization processes. J Process Control 21(4):652–666

    Article  CAS  Google Scholar 

  • Naevdal G, Aanonsen SI, Vefring EH (2005) Reservoir monitoring and continuous model updating using ensemble Kalman filter. SPE Journal 10(1):66–74

  • Nooner S et al (2007) Constraints on the in situ density of CO2 within the Utsira Formation from time-lapse seafloor gravity measurements. Int J Greenhouse Gas Control 1:198–214

    Article  CAS  Google Scholar 

  • Nordbotten J et al (2012) Uncertainties in practical simulation of CO2 storage. Int J Greenhouse Gas Control 9:234–242

    Article  CAS  Google Scholar 

  • Oladyshkin S, Class H, Helmig R, Nowak W (2011) An integrative approach to robust design and probabilistic risk assessment for CO2 storage in geological formations. Comput Geosci 15:565–577

    Article  Google Scholar 

  • Owen A, Zhou Y (1998) Safe and effective importance sampling. Stanford University, Stanford

    Google Scholar 

  • Price P, Oldenburg C (2009) The consequences of failure should be considered in siting geological carbon sequestration projects. Int J Greenhouse Gas Control 3:658–663

    Article  CAS  Google Scholar 

  • Raikes S et al (2008) Integration of 3D Seismic with satellite imagery at In Salah CO2 Sequestration Project, Algeria. Society of Exploration Geophysicists (2008 SEG Annual Meeting), Las Vegas

  • Reichle RH, McLaughlin DB, Entekhabi D (2002) Hydrologic data assimilation with the ensemble Kalman filter. Mon Weather Rev 130(1):103–116

    Article  Google Scholar 

  • Rougier J (2008) Formal Bayes methods for model calibration with uncertainty. In: Applied uncertainty analysis for flood risk management, vol l. Imperial College Press, London

  • Sarkarfarshi M, Malekzadeh FA, Gracie R, Dusseault MB (2014) Parametric sensitivity analysis for CO2 geosequestration. Int J Greenhouse Gas Control 23:61–71

    Article  CAS  Google Scholar 

  • Sato K (2011) Value of information analysis for adequate monitoring of carbon dioxide storage in geological reservoirs under uncertainty. Int J Greenhouse Gas Control 5:1294–1302

    Article  CAS  Google Scholar 

  • Schlumberger (2013) ECLIPSE technical description version 2013.2. s.l.:s.n

  • Shu Q, Kemblowski MW, McKee M (2005) An application of Ensemble Kalman Filter in integral-balance subsurface modeling. Stoch Environ Res Risk Assess 19:361–374

    Article  Google Scholar 

  • Smith PJ, Shafi M, Gao H (1997) Quick simulation: a review of importance sampling techniques in communications systems. IEEE J Sel Areas Commun 15(4):597–613

    Article  Google Scholar 

  • Soreide I, Whitson C (1992) Peng Robinson predictions for hydrocarbons, CO2, N2 and H2S with pure water and NaCl brine. Fluid Phase Equilib 77:217–240

    Article  Google Scholar 

  • SPE International (n.d.) Permeability determination. http://petrowiki.org/Permeability_determination#Determining_permeability. Accessed 2013

  • Stedinger J, Vogel R, Lee S, Batchelder R (2008) Appraisal of the generalized likelihood uncertainty estimation (GLUE) method. Water Resour Res 44:W00B06

  • Tavakoli R et al (2013) Comparison of ensemble filtering algorithms and null-space Monte Carlo for parameter estimation and uncertainty quantification using CO2 sequestration data. Water Resour Res 49:1–20

    Article  Google Scholar 

  • Terejanu GA (2011) Unscented Kalman filter tutorial. University at Buffalo, Buffalo

  • van der Merwe R, Doucet A, De Freitas N, Wan E (2000) The unscented particle filter. In: Proceeding of advances in neural information processing systems (NIPS), pp 584–590

  • van Leeuwen PJ, Evensen G (1996) Data assimilation and inverse methods in terms of a probabilistic formulation. Mon Weather Rev 124:2898–2913

    Article  Google Scholar 

  • Walton FB, Tait JC, LeNeveu D, Sheppard MI (2004) Geological storage of CO2: a statistical approach to assessing performence and risk. Gas Control Technologies, Vancouver

    Google Scholar 

  • Wan E, van der Merwe R (2001) The unscented Kalman filter, vol l. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding from the Natural Science and Engineering Research Council of Canada (NSERC) through Carbon Management Canada (CMC) and from NSERC’s Discovery Grant program. Lastly, we would like to thank our colleagues Drs. James Craig and Maurice Dusseault for their moral support and academic insights.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Gracie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkarfarshi, M., Gracie, R. Unscented importance sampling for parameter calibration of carbon sequestration systems. Stoch Environ Res Risk Assess 29, 975–993 (2015). https://doi.org/10.1007/s00477-014-0963-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-014-0963-7

Keywords

Navigation