Skip to main content
Log in

Approximate copula-based estimation and prediction of discrete spatial data

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

The present paper reports on the use of copula functions to describe the distribution of discrete spatial data, e.g. count data from environmental mapping or areal data analysis. In particular, we consider approaches to parameter point estimation and propose a fast method to perform approximate spatial prediction in copula-based spatial models with discrete marginal distributions. We assess the goodness of the resulting parameter estimates and predictors under different spatial settings and guide the analyst on which approach to apply for the data at hand. Finally, we illustrate the methodology by analyzing the well-known Lansing Woods data set. Software that implements the methods proposed in this paper is freely available in Matlab language on the author’s website.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bárdossy A (2006) Copula-based geostatistical models for groundwater quality parameters. Water Resour Res 42:W11416

    Google Scholar 

  • Bárdossy A, Li J (2008) Geostatistical interpolation using copulas. Water Resour Res 44:W07412

    Article  Google Scholar 

  • Bhat C, Sener P, Eluru N (2010) A flexible spatially dependent discrete choice model: formulation and application to teenagers weekday recreational activity participation. Transp Res B 44:903–921

    Article  Google Scholar 

  • Breslow N, Clayton D (1993) Approximate inference in generalized linear mixed models. J Am Stat Assoc 88:9–25

    Google Scholar 

  • Diggle P, Tawn J, Moyeed R (1998) Model-based geostatistics (with discussion). Appl Stat 47:299–350

    Google Scholar 

  • Diggle P, Ribeiro P (2007) Model-based geostatistics. Springer, New York

    Google Scholar 

  • Famoye F, Singh K (2003) On inflated generalized Poisson regression models. Adv Appl Stat 3(2):145–158

    Google Scholar 

  • Fingleton B (1986) Analyzing cross-classified data with inherent spatial dependence. Geogr Anal 18:4861

    Google Scholar 

  • Gelman A, Rubin D (1992) Inference from iterative simulation using multiple sequences (with discussion). Stat Sci 7:457–511

    Article  Google Scholar 

  • Goovaerts P (2001) Geostatistical modelling of uncertainty in soil science. Geoderma 103:3–26

    Article  Google Scholar 

  • Heagerty P, Lele S (1998) A composite likelihood approach to binary spatial data. J Am Stat Assoc 93:1099–1111

    Article  Google Scholar 

  • Hjort N, Omre H (1994) Topics in spatial statistics. Scand J Stat 21:289–358

    Google Scholar 

  • Joe H (1997) Multivariate models and dependence concepts. Chapman & Hall/CRC, Boca Raton

    Book  Google Scholar 

  • Kazianka H (2012) spatialCopula: a Matlab toolbox for copula-based spatial analysis. Stoch Environ Res Risk Assess. doi:10.1007/s00477-012-0571-3 (in press)

  • Kazianka H, Pilz J (2010) Spatial interpolation using copula-based geostatistical models. In: Atkinson P, Lloyd C (eds) geoENV VII: geostatistics for environmental applications. Springer, Berlin, pp 307–320

  • Kazianka H, Pilz J (2010) Copula-based geostatistical modeling of continuous and discrete data including covariates. Stoch Environ Res Risk Assess 24:661–673

    Article  Google Scholar 

  • Kazianka H, Pilz J (2011) Bayesian spatial modeling and interpolation using copulas. Comp Geosci 37:310–319

    Article  Google Scholar 

  • Kazianka H, Pilz J (2012) Objective Bayesian analysis of spatial data with uncertain nugget and range parameters. Can J Stat 40:304–327

    Article  Google Scholar 

  • Li J, Bárdossy A, Guenni L, Liu M (2011) A copula based observation network design approach. Environ Model Softw 26:1349–1357

    Article  Google Scholar 

  • Lin P-S, Clayton M (2005) Analysis of binary spatial data by quasi-likelihood estimating equations. Ann Stat 33:542–555

    Article  Google Scholar 

  • Madsen L. (2009) Maximum likelihood estimation of regression parameters with spatially dependent discrete data. J Agric Biol Environ Stat 14:375–391

    Article  Google Scholar 

  • Pflug G, Römisch W (2008) Modeling, measuring and managing risk. World Scientific, London

    Google Scholar 

  • Robert C, Casella G (2004) Monte Carlo statistical methods. Springer, New York

    Book  Google Scholar 

  • Rüschendorf L (2009) On the distributional transform, Sklar’s theorem, and the empirical copula process. J Stat Plann Inference 139:3921–3927

    Article  Google Scholar 

  • Sener I, Bhat C (2012) Flexible spatial dependence structures for unordered multinomial choice models: formulation and application to teenagers’ activity participation. Transp Policy 39:657–683

    Article  Google Scholar 

  • Sklar A (1959) Fonctions de repartition a n dimensions et leurs marges. Publ Inst Stat Univ Paris 8:229–231

    Google Scholar 

  • Stein M (1999) Interpolation of spatial data: some theory for kriging. Springer, New York

    Book  Google Scholar 

  • Varin C (2008) On composite marginal likelihoods. AStA Adv Stat Anal 92:1–28

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannes Kazianka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazianka, H. Approximate copula-based estimation and prediction of discrete spatial data. Stoch Environ Res Risk Assess 27, 2015–2026 (2013). https://doi.org/10.1007/s00477-013-0737-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-013-0737-7

Keywords

Navigation