Skip to main content
Log in

Efficient estimation of high-dimensional multivariate normal copula models with discrete spatial responses

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

The distributional transform (DT) is amongst the computational methods used for estimation of high-dimensional multivariate normal copula models with discrete responses. Its advantage is that the likelihood can be derived conveniently under the theory for copula models with continuous margins, but there has not been a clear analysis of the adequacy of this method. We investigate the small-sample and asymptotic efficiency of the method for estimating high-dimensional multivariate normal copula models with univariate Bernoulli, Poisson, and negative binomial margins, and show that the DT approximation leads to biased estimates when there is more discretization. For a high-dimensional discrete response, we implement a maximum simulated likelihood method, which is based on evaluating the multidimensional integrals of the likelihood with randomized quasi Monte Carlo methods. Efficiency calculations show that our method is nearly as efficient as maximum likelihood for fully specified high-dimensional multivariate normal copula models. Both methods are illustrated with spatially aggregated count data sets, and it is shown that there is a substantial gain on efficiency via the maximum simulated likelihood method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aitchinson J, Ho C (1989) The multivariate poisson-log normal distribution. Biometrika 75:621–629

    Google Scholar 

  • Banerjee S, Carlin BP, Gelfand AE (2014) Hierarchical modeling and analysis for spatial data. Chapman & Hall, London

    Google Scholar 

  • Cameron AC, Trivedi PK (1998) Regression analysis of count data. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Denuit M, Lambert P (2005) Constraints on concordance measures in bivariate discrete data. J Multivar Anal 93(1):40–57

    Article  Google Scholar 

  • Diggle P, Ribeiro PJ (2007) Model-based geostatistics. Springer, New York

    Google Scholar 

  • Diggle PJ, Tawn JA, Moyeed RA (1998) Model-based geostatistics. J R Stat Soc 47(3):299–350

    Article  Google Scholar 

  • Ferguson TS (1967) Mathematical statistics: a decision theoretic approach. Probability and mathematical statistics. Academic Press, New York

    Google Scholar 

  • Gelfand AE, Vounatsou P (2003) Proper multivariate conditional autoregressive models for spatial data analysis. Biostatistics 4(1):11–15

    Article  Google Scholar 

  • Genz A (1992) Numerical computation of the multivariate normal probabilities. J Comput Graph Stat 1:141–150

    Google Scholar 

  • Genz A, Bretz F (2002) Methods for the computation of the multivariate \(t\)-probabilities. J Comput Graph Stat 11:950–971

    Article  Google Scholar 

  • Genz A, Bretz F (2009) Computation of multivariate normal and \(t\) probabilities. Springer, New York

    Book  Google Scholar 

  • Genz, A., Bretz, F., Miwa, T., Mi, X., Leisch, F., Scheipl, F., and Hothorn, T. (2012). mvtnorm: Multivariate Normal and t Distributions. R package version 0.9-9992

  • Hodges J (2013) Richly parameterized linear models: additive, time series, and spatial models using random effects. Chapman & Hall, London

    Google Scholar 

  • Hughes, J. (2014). copCAR: A flexible regression model for areal data. J Comput Graph Stat. http://dx.doi.org/10.1080/10618600.2014.948178

  • Joe H (1997) Multivariate models and dependence concepts. Chapman & Hall, London

    Book  Google Scholar 

  • Joe H (2014) Dependence modeling with copulas. Chapman & Hall, London

    Google Scholar 

  • Johnson NL, Kotz S (1972) Continuous multivariate distributions. Wiley, New York

    Google Scholar 

  • Kazianka H (2013) Approximate copula-based estimation and prediction of discrete spatial data. Stoch Environ Res Risk Assess 27(8):2015–2026

    Article  Google Scholar 

  • Kazianka H, Pilz J (2010) Copula-based geostatistical modeling of continuous and discrete data including covariates. Stoch Environ Res Risk Assess 24(5):661–673

    Article  Google Scholar 

  • Lawless JF (1987) Negative binomial and mixed poisson regression. Can J Stat 15(3):209–225

    Article  Google Scholar 

  • Madsen L (2009) Maximum likelihood estimation of regression parameters with spatially dependent discrete data. J Agric Biol Environ Stat 14:375–391

    Article  Google Scholar 

  • Madsen L, Fang Y (2011) Joint regression analysis for discrete longitudinal data. Biometrics 67:1171–1175

    Article  CAS  Google Scholar 

  • Mardia KV (1988) Multi-dimensional multivariate gaussian markov random fields with application to image processing. J Multivar Anal 24(2):265–284

    Article  Google Scholar 

  • Nash J (1990). Compact numerical methods for computers: linear algebra and function minimisation. Hilger, New York. 2nd edition

  • Nelsen RB (2006) An introduction to copulas. Springer, New York

    Google Scholar 

  • Nikoloulopoulos, A. K. (2013a). Copula-based models for multivariate discrete response data. In Durante, F., Härdle, W., and Jaworski, P., editors, Copulae in Mathematical and Quantitative Finance, Springer, New York, p 231–249

  • Nikoloulopoulos AK (2013b) On the estimation of normal copula discrete regression models using the continuous extension and simulated likelihood. J Stat Plan Inference 143:1923–1937

    Article  Google Scholar 

  • Nikoloulopoulos AK, Joe H (2013) Factor copula models for item response data. Psychometrika. http://dx.doi.org/10.1007/s11336-013-9387-4

  • Nikoloulopoulos AK, Joe H, Chaganty NR (2011) Weighted scores method for regression models with dependent data. Biostatistics 12:653–665

    Article  Google Scholar 

  • Rüschendorf L (1981) Stochastically ordered distributions and monotonicity of the oc-function of sequential probability ratio tests. Ser Stat 12(3):327–338

    Article  Google Scholar 

  • Rüschendorf L (2009) On the distributional transform, sklar’s theorem, and the empirical copula process. J Stat Plan Inference 139(11):3921–3927

    Article  Google Scholar 

  • Serfling RJ (1980) Approximation theorems of mathematical statistics. Wiley, New York

    Book  Google Scholar 

  • Shi P, Valdez EA (2014a) Longitudinal modeling of insurance claim counts using jitters. Scand Actuar J 2014(2):159–179

    Article  Google Scholar 

  • Shi P, Valdez EA (2014b) Multivariate negative binomial models for insurance claim counts. Insurance 55:18–29

    Google Scholar 

  • Sklar M (1959) Fonctions de répartition à \(n\) dimensions et leurs marges. Publications de l’Institut de Statistique de l’Université de Paris 8:229–231

    Google Scholar 

  • Song PX-K (2007) Correlated data analysis: modeling, analytics, and application. Springer, New York

    Google Scholar 

  • Varin C (2008) On composite marginal likelihoods. Adv Stat Anal 92:1–28

    Article  Google Scholar 

  • Varin C, Reid N, Firth D (2011) An overview of composite likelihood methods. Stat Sin 21:5–42

    Google Scholar 

  • Xia H, Carlin BP (1998) Spatio-temporal models with errors in covariates: mapping Ohio lung cancer mortality. Stat Med 17(18):2025–2043

    Article  CAS  Google Scholar 

  • Zadnik V, Reich B (2006) Analysis of the relationship between socioeconomic factors and stomach cancer incidence in slovenia. Neoplasma 53(2):103–110

    CAS  Google Scholar 

  • Zhao Y, Joe H (2005) Composite likelihood estimation in multivariate data analysis. Can J Stat 33(3):335–356

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aristidis K. Nikoloulopoulos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikoloulopoulos, A.K. Efficient estimation of high-dimensional multivariate normal copula models with discrete spatial responses. Stoch Environ Res Risk Assess 30, 493–505 (2016). https://doi.org/10.1007/s00477-015-1060-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-015-1060-2

Keywords

Navigation