Skip to main content
Log in

Sensitivity analysis of the probability distribution of groundwater level series based on information entropy

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Information entropy is an effective method to analyze uncertainty in various processes. The principle of maximum entropy (POME) provides a guide line for the parameter estimation of probability density function (PDF). Mutual entropy analysis is well qualified for delineating the nonlinear and complex multivariable relationship. The probability distribution of model output is the element of model uncertainty analysis. In this paper, a synthetic groundwater flow field is build to produce groundwater level series (GLS). The probability distribution of GLS is obtained by the frequency analysis method based on POME and Chi-Squared test. The important uncertainty factors that affect the parameters of PDF of GLS are assessed by the sensitivity analysis methods, which include stepwise regression analysis and mutual entropy analysis. Results of this analysis indicate that most of the GLS follow normal distribution (or log-normal distribution), while a few obey others. The mean and variance of normal GLS are affected differently by the input variables of groundwater model. Mutual entropy analysis is more competitive and appropriate for delineating the nonlinear and nonmonotonic multivariable relationship than stepwise regression analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ajami NK, Hornberger GM, Sunding DL (2008) Sustainable water resource management under hydrological uncertainty. Water Resour Res 44(11):W11406. doi:10.1029/2007wr006736

    Article  Google Scholar 

  • Bergante S, Facciotto G, Minotta G (2010) Identification of the main site factors and management intensity affecting the establishment of Short-Rotation-Coppices (SRC) in Northern Italy through stepwise regression analysis. Cent Eur J Biol 5(4):522–530

    Article  Google Scholar 

  • Beven K, Binley A (1992) The Future of distributed models—model calibration and uncertainty prediction. Hydrol Process 6(3):279–298

    Article  Google Scholar 

  • Beven K, Freer J (2001) Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. J Hydrol 249(1–4):11–29

    Article  Google Scholar 

  • Chen YF, Hou Y, Van Gelder P, Zhigui S (2002) Study of parameter estimation methods for Pearson-III distribution in flood frequency analysis. Iahs-Aish 271:263–269

    Google Scholar 

  • Feyen L, Caers J (2006) Quantifying geological uncertainty for flow and transport modeling in multi-modal heterogeneous formations. Adv Water Resour 29(6):912–929

    Article  Google Scholar 

  • Feyen L, Ribeiro PJ, De Smedt F, Diggle PJ (2003) Stochastic delineation of capture zones: classical versus Bayesian approach. J Hydrol 281(4):313–324

    Article  Google Scholar 

  • Fu JL, Gomez-Hernandez JJ (2009) Uncertainty assessment and data worth in groundwater flow and mass transport modeling using a blocking Markov chain Monte Carlo method. J Hydrol 364(3–4):328–341

    Article  CAS  Google Scholar 

  • Ghaffarian H, Parvin H, Minaei B (2009) A new approach in feature subset selection based on fuzzy entropy concept. 2009 14th international computer conference: 60–64

  • Harbaugh AW (2005) The U.S. geological survey modular ground-water model–the ground-water flow process: U.S. geological survey techniques and methods 6-A16

  • Hassan AE, Bekhit HM, Chapman JB (2008) Uncertainty assessment of a stochastic groundwater flow model using GLUE analysis. J Hydrol 362(1–2):89–109

    Article  Google Scholar 

  • Hassan AE, Bekhit HM, Chapman JB (2009) Using Markov Chain Monte Carlo to quantify parameter uncertainty and its effect on predictions of a groundwater flow model. Environ Modell Softw 24(6):749–763

    Article  Google Scholar 

  • Haussler D, Opper M (1997) Mutual, information, metric entropy and cumulative relative entropy risk. Ann Stat 25(6):2451–2492

    Article  Google Scholar 

  • Jaynes ET (1957) Information theory and statistical mechanics. 2. Phys Rev 108(2):171–190

    Article  Google Scholar 

  • Koundouri P (2004) Current issues in the economics of groundwater resource management. J Econ Surv 18(5):703–740

    Article  Google Scholar 

  • Kumar PTK, Sekimoto H (2009) Reduction of systematic uncertainty in the transmission measurement of iron using entropy based mutual information. Radiat Meas 44(2):168–172

    Article  Google Scholar 

  • Liang J, Zeng GM, Guo SL, et al (2009) Uncertainty analysis of stochastic solute transport in a heterogeneous aquifer. Environ Eng Sci 26(2):359–368

    Google Scholar 

  • Mishra S, Deeds NE, RamaRao BS (2003) Application of classification trees in the sensitivity analysis of probabilistic model results. Reliab Eng Syst Safe 79(2):123–129

    Article  Google Scholar 

  • Mishra S, Deeds N, Ruskauff G (2009) Global sensitivity analysis techniques for probabilistic ground water modeling. Ground Water 47(5):730–747

    Article  Google Scholar 

  • Moddemeijer R (1989) On estimation of entropy and mutual information of continuous distributions. Signal Process 16(3):233–248

    Article  Google Scholar 

  • Modis K, Vatalis K, Papantonopoulos G, Sachanidis C (2010) Uncertainty management of a hydrogeological data set in a Greek lignite basin, using BME. Stoch Env Res Risk A 24(1):47–56

    Article  Google Scholar 

  • Onoz B, Bayazit M (1995) Best-fit distributions of largest available flood samples. J Hydrol 167(1–4):195–208

    Article  Google Scholar 

  • Pappenberger F, Beven KJ, Ratto M, Matgen P (2008) Multi-method global sensitivity analysis of flood inundation models. Adv Water Resour 31(1):1–14

    Article  Google Scholar 

  • Robin MJL, Gutjahr AL, Sudicky EA, Wilson JL (1993) Cross-correlated random-field generation with the direct fourier-transform method. Water Resour Res 29(7):2385–2397

    Article  Google Scholar 

  • Robinson DW (2008) Entropy and uncertainty. Entropy 10(4):493–506

    Article  Google Scholar 

  • Rojas R, Feyen L, Dassargues A (2009) Sensitivity analysis of prior model probabilities and the value of prior knowledge in the assessment of conceptual model uncertainty in groundwater modelling. Hydrol Process 23(8):1131–1146

    Article  Google Scholar 

  • Rojas R, Feyen L, Batelaan O, Dassargues A (2010) On the value of conditioning data to reduce conceptual model uncertainty in groundwater modeling. Water Resour Res 46:W08520. doi:10.1029/2009WR008822

  • Ross SM (2004) Introduction to probability and statistics for engineers and scientists. Elsevier Academic Press, San Diego, CA

    Google Scholar 

  • Serre ML, Christakos G, Li H, Miller CT (2003) A BME solution of the inverse problem for saturated groundwater flow. Stoch Env Res Risk A 17(6):354–369

    Article  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Techn J 27(3):379–423

    Google Scholar 

  • Singh VP (1987) Derivation of the Pearson Type (PT) III distribution by using the principle of maximum-entropy (POME)-reply. J Hydrol 90(3–4):355–357

    Article  Google Scholar 

  • Singh VP (1997) The use of entropy in hydrology and water resources. Hydrol Process 11(6):587–626

    Article  Google Scholar 

  • Singh VP, Singh K (1985a) Derivation of the gamma-distribution by using the principle of maximum-entropy (POME). Water Resour Bull 21(6):941–952

    Google Scholar 

  • Singh VP, Singh K (1985b) Derivation of the Pearson Type (PT) III distribution by using the principle of maximum-entropy (POME). J Hydrol 80(3–4):197–214

    Article  Google Scholar 

  • Singh A, Mishra S, Ruskauff G (2010) Model averaging techniques for quantifying conceptual model uncertainty. Ground Water 48(5):701–715

    Article  CAS  Google Scholar 

  • Sun CX, Zheng SQ (2006) Some Results of parameter estimator based on uniform distribution. College Mathematic 22(5):130–134 (in Chinese with English Abstract)

    Google Scholar 

  • Tsai FTC (2010) Bayesian model averaging assessment on groundwater management under model structure uncertainty. Stoch Env Res Risk A 24(6):845–861

    Article  Google Scholar 

  • Wang D, Singh VP, Zhu YS (2007) Hybrid fuzzy and optimal modeling for water quality evaluation. Water Resour Res 43: W05415 (5)

  • Wang D, Singh VP, Zhu YS, Wu JC (2009) Stochastic observation error and uncertainty in water quality evaluation. Adv Water Resour 32(10):1526–1534

    Article  CAS  Google Scholar 

  • Woodbury A, Sudicky E, Ulrych TJ, Ludwig R (1998) Three-dimensional plume source reconstruction using minimum relative entropy inversion. J Contam Hydrol 32(1–2):131–158

    Article  CAS  Google Scholar 

  • Zhang DP, Luo YL (2000) Applied probability and statistic. Higher Education Press, BeiJing (in Chinese)

    Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Fund of China (No. 41172207, 41071018, 41030746, 40725010, and 40730635), Water Resources Public-welfare Project (No. 200701024), the Skeleton Young Teachers Program and Excellent Disciplines Leaders in Midlife-Youth Program of Nanjing University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong Wang or Jichun Wu.

Appendix: Methods for parameters estimation

Appendix: Methods for parameters estimation

Supposing a number of samples X = (x 1, x 2, …, x n ), n is the length of sample series.

1.1 Normal distribution

The probability density function (PDF) of normal distribution can be expressed as:

$$ f(x) = \frac{1}{{\sqrt {2\pi } \sigma }}\exp \left[ { - \frac{{(x - \mu )^{2} }}{{2\sigma^{2} }}} \right] $$
(9)

The parameters can be estimated by:

$$ \mu = E[x],\quad \sigma^{2} = Var[x] $$
(10)

E[x], Var[x] are mean and variance of samples.

1.2 Gamma-2 distribution

The PDF of gamma-2 distribution is given as:

$$ \left\{ {\begin{array}{*{20}c} {f(\alpha ,\beta ,x) = \frac{{x^{\alpha - 1} \beta^{ - \alpha } e^{( - x/\beta )} }}{\Upgamma (\alpha )}} \hfill \\ {\Upgamma (\alpha ) = \int\limits_{0}^{\infty } {y^{\alpha - 1} \exp ( - y)dy} } \hfill \\ \end{array} } \right. $$
(11)

where α is shape parameter, β is scale parameter. When the parameters are estimated by traditional moment method, α and β can be expressed as follows:

$$ E[x] = \alpha /\beta ,\quad Var[x] = \alpha^{2} /\beta $$
(12)

The parameters are estimated as the function of the second moment of samples, and the estimation error cannot be ignored if the length of data series is not long enough. According to the principle of maximum entropy (POME), the equation of constrains can be written in the following form (Singh and Singh 1985a):

$$ \left\{ {\begin{array}{*{20}c} {{\text{Maximize }}H = - \int\limits_{ - \infty }^{\infty } {f(x)\ln f(x)dx} } \hfill \\ {\int\limits_{0}^{\infty } {f(x)dx = 1} } \hfill \\ {\int\limits_{0}^{\infty } {xf(x)dx = E[x]} } \hfill \\ {\int\limits_{0}^{\infty } {\ln x \cdot f(x)dx = E[\ln x]} } \hfill \\ \end{array} } \right. $$
(13)

And the parameters are estimated by following equations:

$$ \left\{ {\begin{array}{*{20}c} {E[x] = \alpha /\beta } \hfill \\ {E[\ln x] = \ln (1/\beta ) + \psi (\alpha )} \hfill \\ {\psi (x) = d[\ln \Upgamma (x)]/dx = \ln x - \frac{1}{2x} - \frac{1}{{12x^{2} }} + \frac{1}{{120x^{4} }} - \frac{1}{{252x^{6} }}} \hfill \\ {\Upgamma (x) = \int\limits_{0}^{\infty } {y^{x - 1} \exp ( - y)dy} } \hfill \\ \end{array} } \right. $$
(14)

1.3 P-III distribution

The PDF of p-III distribution can be expressed as:

$$ f(x) = \frac{{\beta^{\alpha } }}{\Upgamma (\alpha )}(x - c)^{\alpha - 1} e^{ - \beta (x - c)} ,\quad \alpha > 0,\;x \ge c $$
(15)

where α is shape parameter, β is scale parameter, c is location parameter. When the parameters are estimated by traditional moment method, the parameters can be given by:

$$ \left\{ {\begin{array}{*{20}c} {\alpha = \frac{4}{{C_{s}^{2} }}} \hfill \\ {\beta = \frac{2}{{\bar{x}C_{v} C_{s} }}\bar{x} = E[x]} \hfill \\ {c = \bar{x}\left( {1 - \frac{{2C_{v} }}{{C_{s} }}} \right)C_{v} = \frac{{\sigma_{x} }}{E[x]}} \hfill \\ \end{array} } \right. $$
(16)

C s is skewness coefficient, C v is deviation coefficient. Hereinto, the C v is the third order moment of samples, a large estimation error will be inevitable if the length of data series is not long enough. Based on POME, the equation of constrains can be written in the following form (Singh and Singh 1985b; Singh 1987):

$$ \left\{ {\begin{array}{l} {{\text{Maximize}}\;H = - \int_{{ - \infty }}^{\infty } {f(x)\ln f(x)dx} } \\ {\int_{0}^{\infty } {f(x)dx = 1} } \\ {\int_{0}^{\infty } {xf(x)dx = E[x]} } \\ {\int_{c}^{\infty } {\ln (x - c) \cdot f(x)dx = E[\ln (x - c)]} } \\ \end{array} } \right.$$
(17)

Based on Eq. 17, a formula can be derived as:

$$ \frac{1}{n}\sum\limits_{i = 1}^{n} {\ln \left[ {x_{i} - \bar{x} + \sigma_{x} \alpha^{1/2} } \right]} = \frac{1}{2}\ln \alpha + \ln \sigma_{x} - \frac{1}{2\alpha } - \frac{1}{{12\alpha^{2} }} + \frac{1}{{120\alpha^{4} }} - \frac{1}{{252\alpha^{6} }} $$
(18)

After that, Usually, the curve-fitting method (Chen et al. 2002) is adopted to solve the Eqs. 16,18.

1.4 Uniform distribution

The PDF of uniform distribution can be expressed as:

$$ f(x) = \left\langle {\begin{array}{*{20}c} {\frac{1}{{\theta_{2} - \theta_{1} }}} & {\theta_{1} \le x \le \theta_{2} } \\ 0 & {\text{else}} \\ \end{array} } \right. $$
(19)

The parameters can be estimated by (Sun and Zheng 2006):

$$ \theta_{1} = \frac{1}{n - 1}\left( {nX_{1}^{*} - X_{n}^{*} } \right),\quad \theta_{2} = \frac{1}{n - 1}\left( {nX_{n}^{*} - X_{1}^{*} } \right) $$
(20)
$$ X_{1}^{*} = \min (x_{1} , \ldots ,x_{n} ),\quad X_{n}^{*} = \max (x_{1} , \ldots ,x_{n} ) $$
(21)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, X., Wang, D. & Wu, J. Sensitivity analysis of the probability distribution of groundwater level series based on information entropy. Stoch Environ Res Risk Assess 26, 345–356 (2012). https://doi.org/10.1007/s00477-012-0556-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-012-0556-2

Keywords

Navigation