Skip to main content
Log in

Exposure reconstruction using a physiologically based toxicokinetic model with cumulative amount of metabolite in urine: a case study of trichloroethylene inhalation

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

The use of a physiologically based toxicokinetic (PBTK) model to reconstruct chemical exposure using human biomonitoring data, urinary metabolites in particular, has not been fully explored. In this paper, the trichloroethylene (TCE) exposure dataset by Fisher et al. (Toxicol Appl Pharm 152:339–359, 1998) was reanalyzed to investigate this new approach. By treating exterior chemical exposure as an unknown model parameter, a PBTK model was used to estimate exposure and model parameters by measuring the cumulative amount of trichloroethanol glucuronide (TCOG), a metabolite of TCE, in voided urine and a single blood sample of the study subjects by Markov chain Monte Carlo (MCMC) simulations. An estimated exterior exposure of 0.532 mg/l successfully reconstructed the true inhalation concentration of 0.538 mg/l with a 95% CI (0.441–0.645) mg/l. Based on the simulation results, a feasible urine sample collection period would be 12–16 h after TCE exposure, with blood sampling at the end of the exposure period. Given the known metabolic pathway and exposure duration, the proposed computational procedure provides a simple and reliable method for environmental (occupational) exposure and PBTK model parameter estimation, which is more feasible than repeated blood sampling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

C inh :

Inhalation concentration (mg/l)

V fc :

Scaled proportion of fat volume

V rc :

Scaled proportion of rapidly perfused tissue volume

V sc :

Scaled proportion of slowly perfused tissue volume

V lc :

Scaled proportion of liver volume

Q cc :

Cardiac output flow rate (l/h/kg0.75)

Q alv :

Alveolar flow rate (l/h/kg0.75)

Q fc :

Scaled proportion of flow rate to fat

Q rc :

Scaled proportion of flow rate to rapidly perfused tissue

Q sc :

Scaled proportion of flow rate to slowly perfused tissue

Q lc :

Scaled proportion of flow rate to liver

p f :

Partition coefficient of TCE between blood and fat tissue

p r :

Partition coefficient of TCE between blood and rapidly perfused tissue

p s :

Partition coefficient of TCE between blood and slowly perfused tissue

p l :

Partition coefficient of TCE between blood and liver tissue

p b :

Partition coefficient of TCE between blood and air

V TCEmax_c :

Maximum metabolic rate of TCE (scaled by subject’s body weight to the power 0.75 (mg/h/kg0.75))

K TCEm :

Michaelis–Menten kinetic constant of TCE (mg/l)

P :

Rescaled p TCETCOH the proportion of TCE converted to TCOH in the liver

k fc :

Rate of production of DCVC from TCE (h−1)

V TCOHmax_A_c :

Capacity for oxidation of TCOH to TCA (scaled by subject’s body weight to the power 0.75 (mg/h/kg0.75))

K TCOHm_A :

Affinity for oxidation of TCOH to TCA (mg/l)

V TCOHmax_G_c :

Capacity for glucuronidation of TCOH to TCOG (scaled by subject’s body weight to the power 0.75 (mg/h/kg0.75))

K TCOHm_G :

Affinity for glucuronidation of TCOH to TCOG (mg/l)

k TCOGe_c :

Biliary excretion rate of TCOG (scaled by subject’s body weight to the power −0.25 (h−1 kg−0.25))

k TCOGu_c :

Urinary excretion rate of TCOG (scaled by subject’s body weight to the power −0.25 (h−1 kg−0.25))

VD TCOHc :

The TCOH distribution volume (kg)

τ b :

Reciprocal of the variance of the measurement error of TCE in blood

τ u :

Reciprocal of the variance of the measurement error of TCOG in urine

References

  • Allen BC, Hack CE, Clewell HJ (2007) Use of Markov Chain Monte Carlo analysis with a physiologically-based pharmacokinetic model of methylmercury to estimate exposures in U.S. women of childbearing age. Risk Anal 27(4):947–959

    Article  Google Scholar 

  • Andersen ME (2003) Toxicokinetic modeling and its applications in chemical risk assessment. Toxicol Lett 138:9–27

    Article  CAS  Google Scholar 

  • Barr DB, Wilder LC, Caudill SP, Gonzalez AJ, Needham LL, Pirkle JL (2005) Urinary creatinine concentrations in the US population: implications for urinary biologic monitoring measurements. Environ Health Perspect 113(2):192–200

    Article  CAS  Google Scholar 

  • Bernillon P, Bois FY (2000) Statistical issues in toxicokinetic modeling: a Bayesian perspective. Environ Health Perspect 108(Suppl 5):883–893

    CAS  Google Scholar 

  • Bois FY (2000) Statistical analysis of Fisher et al. PBPK model of trichloroethylene kinetics. Environ Health Perspect 108(Suppl 2):275–282

    Article  CAS  Google Scholar 

  • Bois FY, Jackson ET, Pekari K, Smith MT (1996) Population toxicokinetics of benzene. Environ Health Perspect 104(Suppl 6):1405–1411

    Article  CAS  Google Scholar 

  • Chen CC, Wu KY, Chang WMJ (2004) A statistical assessment on the stochastic relationship between biological measurement and environmental exposure. Stoch Env Res Risk Assess 18:377–385

    Article  Google Scholar 

  • Chen CC, Shih MC, Wu KY (2010) Exposure estimation using repeated blood concentration measurements. Stoch Env Res Risk Assess 24(3):445–454

    Article  Google Scholar 

  • Chiu WA, Okino MS, Evans MV (2009) Characterizing uncertainty and population variability in the toxicokinetics of trichloroethylene and metabolites in mice, rat, and humans using an updated database, physiologically based pharmacokinetic (PBPK) model, and Bayesian approach. Toxicol Appl Pharm 241:36–60

    Article  CAS  Google Scholar 

  • Clewell HJ III, Gentry PR, Covington TR, Gearhart JM (2000) Development of a physiologically based pharmacokinetic model of trichloroethylene and its metabolites for use in risk assessment. Environ Health Perspect 108(Suppl 2):283–305

    Article  CAS  Google Scholar 

  • Clewell HJ, Covington TR, Fisher JW, Chiu WA, Lipscomb JC (2004) Development of a physiologically based pharmacokinetic model of trichloroethylene and its metabolites for use in risk assessment. Report prepared for U.S. Air Force. U.S. Air Force/U.S. Environmental Protection Agency. http://www.tera.org/vera/TCE/TCE%20PBPK%20harmonization%20document.pdf. Accessed 1 October 2008

  • Clewell HJ, Tan YM, Campbell JL, Andersen ME (2008) Quantitative interpretation of human biomonitoring data. Toxicol Appl Pharm 231:122–133

    Article  CAS  Google Scholar 

  • Fisher JW (2000) Physiologically based pharmacokinetic models for trichloroethylene and its oxidative metabolites. Environ Health Perspect 108(Suppl 2):265–273

    Google Scholar 

  • Fisher JW, Mahle D, Abbas R (1998) A human physiologically based pharmacokinetic model for trichloroethylene and its metabolites, trichloroacetic acid and free trichloroethanol. Toxicol Appl Pharm 152:339–359

    Article  CAS  Google Scholar 

  • Franks SJ, Spendiff MK, Loizou GD (2006) Physiologically based pharmacokinetic modeling of human exposure to 2-butoxyethanol. Toxicol Lett 162:164–173

    Article  CAS  Google Scholar 

  • Gelman A (1996) Inference and monitoring convergence. In: Gilks WR, Richardson S, Spiegelhalter DJ (eds) Markov Chain Monte Carlo in practice. Chapman & Hall/CRC, Boca Raton, pp 131–143

    Google Scholar 

  • Gelman A, Bois FY, Jiang J (1996) Physiological pharmacokinetic analysis using population modeling and informative prior distributions. J Am Stat Assoc 91(436):1400–1412

    Article  Google Scholar 

  • Georgopoulos PG, Sasso AF, Isukapalli SS, Lioy PJ, Vallero DA, Okino M, Reiter L (2009) Reconstructing population exposures to environmental chemicals from biomarkers: challenge and opportunities. J Expos Anal Environ Epidemiol 19(2):149–171

    Article  CAS  Google Scholar 

  • Gilks WR (1996) Full conditional distributions. In: Gilks WR, Richardson S, Spiegelhalter DJ (eds) Markov Chain Monte Carlo in Practice. Chapman & Hall/CRC, Boca Raton, pp 75–88

    Google Scholar 

  • Kim S, Vermeulen R, Waidyanatha S, Johnson BA, Lan Q, Rothman N, Smith MT, Zhang L, Li G, Shen M, Yin S, Rappaport SM (2006) Using urinary biomarkers to elucidate dose-related patterns of human benzene metabolism. Carcinogenesis 27(4):772–781

    Article  CAS  Google Scholar 

  • Koch HM, Becker K, Wittassek M, Seiwert M, Angerer J, Kolossa-Gehring M (2007) Di-n-butylphthalate and butylbenzylphthalate―urinary metabolite levels and estimated daily intakes: pilot study for the German environmental survey on children. J Expos Sci Environ Epidemiol 17:378–387

    Article  CAS  Google Scholar 

  • Leung HW (1992) Use of physiologically based pharmacokinetic models to establish biological exposure indexes. Am Ind Hyg Assoc J 53:369–374

    Article  CAS  Google Scholar 

  • Lyons MA, Yang RSH, Mayeno AN, Reisfeld B (2008) Computational toxicology of chloroform: reverse dosimetry using Bayesian inference, Markov chain Monte Carlo simulation, and human biomonitoring data. Environ Health Perspect 116(8):1040–1046

    Article  CAS  Google Scholar 

  • Maxwell RM, Kastenberg WE (1999) Stochastic environmental risk analysis: an integrated methodology for predicting cancer risk from contaminated groundwater. Stoch Env Res Risk Assess 13:27–47

    Article  Google Scholar 

  • Mutshinda CM, Antai I, O’Hara RB (2008) A probabilistic approach to exposure risk assessment. Stoch Env Res Risk Assess 22:441–449

    Article  Google Scholar 

  • Tan YM, Liao KH, Clewell HJ (2007) Reverse dosimetry: interpreting trihalomethanes biomonitoring data using physiologically based pharmacokinetic modeling. J Expos Sci Environ Epidemiol 17(7):591–603

    Article  CAS  Google Scholar 

  • Waidyanatha S, Rothman N, Fustinoni S, Smith MT, Hayes RB, Bechtold W, Dosemeci M, Guilan L, Yin S, Rappaport SM (2001) Urinary benzene as a biomarker of exposure among occupationally exposed and unexposed subjects. Carcinogenesis 22(2):279–286

    Article  CAS  Google Scholar 

  • Wiwanitkit V, Suwansaksri J, Soogarun S (2008) High urine hippuric acid level among police working close to traffic in an urban area, Thailand: a preliminary study. Stoch Env Res Risk Assess 22:281–283

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Science Council (NSC 97-2118-M-400-001) and the National Health Research Institutes of Taiwan (BS-098-PP-09). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Health Research Institutes of Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chu-Chih Chen.

Appendix

Appendix

1.1 Compartment TCE concentrations

Index the fat, slowly perfused (e.g., muscle), richly perfused, and liver compartments of a 4-compartment PBTK model by k = fsrl, respectively. According to the law of mass-balance, the rate of change of the amount of TCE within a compartment equals the amount of unit time influx of TCE subtracted by efflux. The PBTK model is thus constructed based on the rate changes of TCE for the non-liver compartments

$$ \frac{{{\text{d}}A_{k}^{\text{TCE}} (t)}}{{{\text{d}}t}} = Q_{k} \times \left( {C_{\text{art}}^{\text{TCE}} (t) - \frac{{A_{k}^{\text{TCE}} (t)}}{{V_{k} \times p_{k} }}} \right),\;\;\;\;k = f,s,r $$
(4)

and the rate change for the liver compartment because a certain amount of TCE is metabolized

$$ \frac{{{\text{d}}A_{\text{l}}^{\text{TCE}} (t)}}{{{\text{d}}t}} = Q_{4} \times \left( {C_{\text{art}}^{\text{TCE}} (t) - \frac{{A_{\text{l}}^{\text{TCE}} (t)}}{{V_{\text{l}} \times p_{\text{l}} }}} \right) - \frac{{V_{\max }^{\text{TCE}} \frac{{A_{\text{l}}^{\text{TCE}} (t)}}{{V_{\text{l}} \times p_{\text{l}} }}}}{{K_{\text{m}}^{\text{TCE}} + \frac{{A_{\text{l}}^{\text{TCE}} (t)}}{{V_{\text{l}} \times p_{\text{l}} }}}} - k_{\text{f}}^{\text{TCE}} \times \frac{{A_{\text{l}}^{\text{TCE}} (t)}}{{V_{\text{l}} \times p_{\text{l}} }} \times V_{\text{l}} , $$
(5)

where

$$ C_{\text{art}}^{\text{TCE}} (t) = \left( {Q_{\text{c}} C_{\text{ven}}^{\text{TCE}} (t) + Q_{\text{alv}} C_{\text{inh}} \left( t \right)} \right)/\left( {Q_{\text{c}} + Q_{\text{alv}} /p_{\text{b}} } \right) $$
(6)
$$ C_{\text{ven}}^{\text{TCE}} (t) = \frac{{Q_{\text{f}} \frac{{A_{\text{f}}^{\text{TCE}} (t)}}{{V_{\text{f}} \times p_{\text{f}} }} + Q_{\text{s}} \frac{{A_{\text{s}}^{\text{TCE}} (t)}}{{V_{\text{s}} \times p_{\text{s}} }} + Q_{\text{r}} \frac{{A_{\text{r}}^{\text{TCE}} (t)}}{{V_{\text{r}} \times p_{\text{r}} }} + Q_{\text{l}} \frac{{A_{\text{l}}^{\text{TCE}} (t)}}{{V_{\text{l}} \times p_{\text{l}} }}}}{{Q_{\text{c}} }} $$
(7)

and C TCEart (t) (C TCEven (t)) (mg/l) is the arterial (venous) blood TCE concentration, C inh(t) (mg/l) is the inhalation TCE concentration, C TCE k (t) (mg/l) is the TCE concentration in the kth compartment at time t, Q alv (l/h) is the alveolar ventilation, and Q k (l/h), V k (l) and p k are the blood flow rate, volume, and tissue–blood partition coefficient of the kth compartment, respectively. In addition, p b is the blood–air partition coefficient, Q c (l/h) is the cardiac flow, V TCEmax (mg/h) is the maximum rate of metabolism, and K TCEm (mg/l) is the Michaelis–Menten kinetic constant of TCE. The conversion from C TCEven (t) to C TCEart (t) that involves the blood–air partition coefficient P b does not need an individual’s lung lumen volume. Therefore, a lung compartment is not necessary in this case.

1.2 Mass-balance equations of the metabolites TCOH and TCOG

Let the cumulative amount of the total metabolites in the liver at time t be A TCE(t) and the cumulative amounts of the metabolite TCOH (TCOG) in the liver and in the voided urine at time t be A TCOH(t)(A TCOG(t)) and A TCOGu (t), respectively. The following mass balance equations mainly follow those of Clewell et al. (2000):

$$ \frac{{{\text{d}}A^{\text{TCE}} \left( t \right)}}{{{\text{d}}t}} = \frac{{V_{\max }^{\text{TCE}} \frac{{A^{\text{TCE}} \left( t \right)}}{{V_{\text{l}}\,\times\,p_{\text{l}} }}}}{{K_{\text{m}}^{\text{TCE}} + \frac{{A^{\text{TCE}} \left( t \right)}}{{V_{\text{l}}\,\times\,p_{\text{l}} }}}}, $$
(8)
$$ \frac{{{\text{d}}A^{\text{TCOH}} (t)}}{{{\text{d}}t}} = p_{\text{TCOH}}^{\text{TCE}} \times \frac{{{\text{d}}A^{\text{TCE}} (t)}}{{{\text{d}}t}} \times \frac{{{\text{MW}}_{\text{TCOH}} }}{{{\text{MW}}_{\text{TCE}} }} - \frac{{V_{{\max \_{\text{G}}}}^{\text{TCOH}} \frac{{A^{\text{TCOH}} (t)}}{{{\text{VD}}^{\text{TCOH}} }}}}{{K_{{{\text{m}}\_{\text{G}}}}^{\text{TCOH}} + \frac{{A^{\text{TCOH}} (t)}}{{{\text{VD}}^{\text{TCOH}} }}}} - \frac{{V_{{\max \_{\text{A}}}}^{\text{TCOH}} \frac{{A^{\text{TCOH}} (t)}}{{{\text{VD}}^{\text{TCOH}} }}}}{{K_{{{\text{m}}\_{\text{A}}}}^{\text{TCOH}} + \frac{{A^{\text{TCOH}} (t)}}{{{\text{VD}}^{\text{TCOH}} }}}} $$
(9)
$$ \frac{{{\text{d}}A^{\text{TCOG}} (t)}}{{{\text{d}}t}} = \frac{{V_{\max \_G}^{\text{TCOH}} \frac{{A^{\text{TCOH}} (t)}}{{{\text{VD}}^{\text{TCOH}} }}}}{{K_{{{\text{m}}\_{\text{G}}}}^{\text{TCOH}} + \frac{{A^{\text{TCOH}} (t)}}{{{\text{VD}}^{\text{TCOH}} }}}} \times \frac{{{\text{MW}}_{\text{TCOG}} }}{{{\text{MW}}_{\text{TCOH}} }} - k_{\text{u}}^{\text{TCOG}} \times A^{\text{TCOG}} (t) - k_{\text{e}}^{\text{TCOG}} \times A^{\text{TCOG}} (t) \, $$
(10)

and

$$ \frac{{{\text{d}}A_{\text{u}}^{\text{TCOG}} (t)}}{{{\text{d}}t}} = k_{\text{u}}^{\text{TCOG}} \times A^{\text{TCOG}} (t) $$
(11)

where p TCETCOH is the proportion of TCE in liver that is converted to TCOH, k TCOGu (k TCOGe ) is the urinary (biliary) excretion rate for TCOG in the liver, V TCOHmax_G (V TCOHmax_A ) is the capacity for glucuronidation (oxidation) of TCOH to TCOG (TCA) (mg/h), K TCOHm_G (K TCOHm_A ) is the affinity for glucuronidation (oxidation) of TCOH to TCOG (TCA), VDTCOH (kg) is the TCOH distribution volume, and MW j is the molecular weight of chemical j.

1.3 Rescale the model parameters

The vector of the model and kinetic parameters is

$$ {\varvec{\Uptheta}} = \left( \begin{gathered} Q_{\text{c}} ,Q_{\text{rc}} ,Q_{\text{lc}} ,Q_{\text{sc}} ,Q_{\text{fc}} ,V_{\text{rc}} ,V_{\text{lc}} ,V_{\text{sc}} ,V_{\text{fc}} ,p_{\text{r}} ,p_{\text{l}} ,p_{\text{s}} ,p_{\text{f}} ,p_{\text{b}} ,p, \hfill \\ V_{{\max \_{\text{c}}}}^{\text{TCE}} ,K_{\text{m}}^{\text{TCE}} ,V_{{\max \_{\text{A}}\_{\text{c}}}}^{\text{TCOH}} ,K_{{{\text{m}}\_{\text{A}}}}^{\text{TCOH}} ,V_{{\max \_{\text{G}}\_{\text{c}}}}^{\text{TCOH}} ,K_{{{\text{m}}\_{\text{G}}}}^{\text{TCOH}} ,k_{\text{ec}}^{\text{TCOG}} ,k_{\text{uc}}^{\text{TCOG}} ,k_{\text{fc}} ,{\text{VD}}^{\text{TCOH}} \hfill \\ \end{gathered} \right)^{\prime } $$

The scaling of the parameters is as follows:

\( {\text{SV}} = {{(V_{\text{fc}} + V_{\text{rc}} + V_{\text{sc}} + V_{\text{lc}} )} \mathord{\left/ {\vphantom {{(V_{\text{fc}} + V_{\text{rc}} + V_{\text{sc}} + V_{\text{lc}} )} {0.894}}} \right. \kern-\nulldelimiterspace} {0.894}},\;\;\;\;V_{\text{f}} = \frac{{V_{\text{fc}} }}{\text{SV}} \times {\text{BW}}/0.92,\;\;\;\;V_{\text{l}} = \frac{{V_{\text{lc}} }}{\text{SV}} \times {\text{BW}},\;\;\;\;V_{\text{r}} = \frac{{V_{\text{rc}} }}{\text{SV}} \times {\text{BW}},\;\;\;\;V_{\text{s}} = \frac{{V_{\text{sc}} }}{\text{SV}} \times {\text{BW}},\;\;\;\;Q_{\text{c}} = Q_{\text{cc}} \times {\text{BW}}^{0.75} ,\;\;\;\;{\text{SQ}} = Q_{\text{fc}} + Q_{\text{rc}} + Q_{\text{sc}} + Q_{\text{lc}} ,\;\;\;\;Q_{\text{f}} = \frac{{Q_{\text{fc}} }}{\text{SQ}}Q_{\text{c}} ,\;\;\;\;Q_{\text{s}} = \frac{{Q_{\text{sc}} }}{\text{SQ}}Q_{\text{c}} ,\;\;\;\;{\text{and}}\;\;\;\;Q_{\text{r}} = \frac{{Q_{\text{rc}} }}{\text{SQ}}Q_{\text{c}} ,\;\;\;\;Q_{\text{l}} = \frac{{Q_{\text{lc}} }}{\text{SQ}}Q_{\text{c}} ,\;\;\;\;p_{\text{TCOH}}^{\text{TCE}} = \frac{1}{1 + p}, \) where \( Q_{\text{cc}} \) is the cardiac output, V fcV scV rcV lc and Q fcQ scQ rcQ lc are the scaling coefficients of the volumes and flow rates to the fat, slowly perfused, rapidly perfused, and liver compartments, respectively.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, CC., Shih, MC. & Wu, KY. Exposure reconstruction using a physiologically based toxicokinetic model with cumulative amount of metabolite in urine: a case study of trichloroethylene inhalation. Stoch Environ Res Risk Assess 26, 21–31 (2012). https://doi.org/10.1007/s00477-011-0502-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-011-0502-8

Keywords

Navigation