Skip to main content
Log in

Simultaneous estimation of the parameters of the Hurst–Kolmogorov stochastic process

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Various methods for estimating the self-similarity parameter (Hurst parameter, H) of a Hurst–Kolmogorov stochastic process (HKp) from a time series are available. Most of them rely on some asymptotic properties of processes with Hurst–Kolmogorov behaviour and only estimate the self-similarity parameter. Here we show that the estimation of the Hurst parameter affects the estimation of the standard deviation, a fact that was not given appropriate attention in the literature. We propose the least squares based on variance estimator, and we investigate numerically its performance, which we compare to the least squares based on standard deviation estimator, as well as the maximum likelihood estimator after appropriate streamlining of the latter. These three estimators rely on the structure of the HKp and estimate simultaneously its Hurst parameter and standard deviation. In addition, we test the performance of the three methods for a range of sample sizes and H values, through a simulation study and we compare it with other estimators of the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Beran J (1994) Statistics for long-memory processes. Monographs on statistics and applied probability, vol 61. Chapman and Hall, New York

    Google Scholar 

  • Bouette JC, Chassagneux JF, Sibai D, Terron R, Charpentier R (2006) Wind in Ireland: long memory or seasonal effect. Stoch Environ Res Risk Assess 20(3):141–151

    Article  Google Scholar 

  • Coeurjolly JF (2008) Hurst exponent estimation of locally self-similar Gaussian processes using sample quantiles. Ann Statist 36(3):1404–1434

    Article  Google Scholar 

  • Cox DR, Reid N (1987) Parameter orthogonality and approximate conditional inference. J R Stat Soc Ser B 49(1):1–39

    Google Scholar 

  • Doukhan P, Oppenheim G, Taqqu M (2003) Theory and applications of long-range dependence. Birkhauser, Boston

  • Ehsanzadeh E, Adamowski K (2010) Trends in timing of low stream flows in Canada: impact of autocorrelation and long-term persistence. Hydrol Process 24:970–980

    Article  Google Scholar 

  • Embrechts P, Maejima M (2002) Self similar processes. Princeton University Press, Princeton

  • Esposti F, Ferrario M, Signorini MG (2008) A blind method for the estimation of the Hurst exponent in time series: theory application. Chaos 18(3). doi:10.1063/1.2976187

  • Grau-Carles P (2005) Tests of long memory: a bootstrap approach. Stoch Environ Res Risk Assess 25(1–2):103–113

    Google Scholar 

  • Guerrero A, Smith L (2005) A maximum likelihood estimator for long-range persistence. Phys A 355(2–4):619–632

    Google Scholar 

  • Hurst HE (1951) Long term storage capacities of reservoirs. Trans ASCE 116:776–808

    Google Scholar 

  • Kolmogorov AE (1940) Wienersche Spiralen und einige andere interessante Kurven in Hilbertschen Raum. Dokl Akad Nauk URSS 26:115–118

    Google Scholar 

  • Koutsoyiannis D (2003a) Climate change, the Hurst phenomenon, and hydrological statistics. Hydrol Sci J 48(1):3–24

    Article  Google Scholar 

  • Koutsoyiannis D (2003b) Internal report. http://www.itia.ntua.gr/getfile/537/2/2003HSJHurstSuppl.pdf

  • Koutsoyiannis D, Montanari A (2007) Statistical analysis of hydroclimatic time series: uncertainty and insights. Water Resour Res 43(5): W05429. doi:10.1029/2006WR005592

  • Mandelbrot BB, JW van Ness (1968) Fractional Brownian motion, fractional noises and applications. SIAM Rev 10:422–437

    Google Scholar 

  • McLeod AI, Hippel K (1978) Preservation of the rescaled adjusted range. 1. A reassessment of the Hurst phenomenon. Water Resour Res 14(3):491–508

    Article  Google Scholar 

  • McLeod AI, Yu H, Krougly Z (2007) Algorithms for linear time series analysis: With R package. J Stat Softw 23(5):1–26

    Google Scholar 

  • Mielniczuk J, Wojdyllo P (2007) Estimation of Hurst exponent revisited. Comput Stat Data Anal 51(9):4510–4525

    Article  Google Scholar 

  • Musicus B (1988) Levinson and fast Cholesky algorithms for Toeplitz and almost Toeplitz matrices. RLE Technical Report No. 538. Research Laboratory of Electronics Massachusetts Institute of Technology, Cambridge

  • Palma W (2007) Long-memory time series theory and methods. Wiley Interscience, New York

    Book  Google Scholar 

  • Rea W, Oxley L, Reale M, Brown J (2009) Estimators for long range dependence: an empirical study. Electronic J Stat. arXiv:0901.0762v1

  • Robert C (2007) The Bayesian choice: from decision-theoretic foundations to computational implementation. Springer, New York

    Google Scholar 

  • Robinson PM (1995) Gaussian semiparametric estimation of time series with long-range dependence. Ann Stat 23:1630–1661

    Article  Google Scholar 

  • Robinson PM (2003) Time series with long memory. Oxford University Press. Oxford

  • Taqqu M, Teverovsky V, Willinger W (1995) Estimators for long-range dependence: an empirical study. Fractals 3(4):785–798

    Article  Google Scholar 

  • Weron R (2002) Estimating long-range dependence: finite sample properties and confidence intervals. Phys A 312(1–2):285–299

    Google Scholar 

  • Zhang Q, Xu CY, Yang T (2009) Scaling properties of the runoff variations in the arid and semi-arid regions of China: a case study of the Yellow River basin. Stoch Environ Res Risk Assess 23(8):1103–1111

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank two anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demetris Koutsoyiannis.

Appendices

Appendix A: Proof of Eqs. 8 and 9

From Eq. 7 we obtain:

$$ p\left( {{\varvec{\uptheta}}|{\mathbf{x}}_{n} } \right) \, = \, {\frac{1}{{(2\pi )^{n/2} }}}{\frac{1}{{\sigma^{n} }}}\left[ {\det \left( {\mathbf{R}} \right)} \right]^{ - 1/2} \exp \left[ { - {\frac{1}{{2\sigma^{2} }}}\left( {{\mathbf{e}}^{\text{T}} {\mathbf{R}}^{ - 1} {\mathbf{e}}\left( {\mu - {\frac{{x_{n}^{\text{T}} {\mathbf{R}}^{ - 1} {\mathbf{e}}}}{{e^{\text{T}} {\mathbf{R}}^{ - 1} {\mathbf{e}}}}}} \right)^{2} + {\frac{{{\mathbf{e}}^{\text{T}} {\mathbf{R}}^{ - 1} {\mathbf{ex}}_{n}^{\text{T}} {\mathbf{R}}^{ - 1} {\mathbf{x}}_{n} - \left( {{\mathbf{x}}_{n}^{\text{T}} {\mathbf{R}}^{ - 1} {\mathbf{e}}} \right)^{2} }}{{{\mathbf{e}}^{\text{T}} {\mathbf{R}}^{ - 1} {\mathbf{e}}}}}} \right)} \right] $$
(26)

Since e T R −1 e > 0 (R is positive definite matrix) the maximum of p(θ|x n ) is achieved when

$$ \hat{\mu } = {\frac{{{\mathbf{x}}_{n}^{\text{T}} {\mathbf{R}}^{ - 1} {\mathbf{e}}}}{{{\mathbf{e}}^{\text{T}} {\mathbf{R}}^{ - 1} {\mathbf{e}}}}} $$
(27)

For that value of μ, taking the logarithm of the posterior density we obtain:

$$ { \ln }[p\left( {{\varvec{\theta}}|{\mathbf{x}}_{n} } \right)] = - \left( {n/ 2} \right){ \ln }\left( { 2\pi } \right) - n\,{\ln }\sigma - \left( { 1/ 2} \right){ \ln }\left[ {{ \det }\left( {\mathbf{R}} \right)} \right] - {\frac{1}{{2\sigma^{2} }}}\left( {{\mathbf{x}}_{n} - \hat{\mu }{\mathbf{e}}} \right)^{\text{T}} \, {\mathbf{R}}^{ - 1} \left( {{\mathbf{x}}_{n} - \hat{\mu }{\mathbf{e}}} \right) $$
(28)
$$ {\frac{{\partial { \ln }[p\left({{\varvec{\theta}}|{\mathbf{x}}_{n} } \right)]}}{\partial \sigma}} = - {\frac{n}{\sigma }} + {\frac{1}{{\sigma^{3} }}}\left({{\mathbf{x}}_{n} - \hat{\mu }{\mathbf{e}}} \right)^{\text{T}} {{\mathbf{R}}^{ - 1} ({\mathbf{x}}_{n} - \hat{\mu}{\mathbf{e}}})$$
(29)

Thus, the logarithm of the maximum posterior density is maximized when \( {\frac{{\partial { \ln }[p\left( {{\varvec{\uptheta}}|{\mathbf{x}}_{n} } \right)]}}{\partial \sigma }} = 0 \). The solution of this equation proves Eq. 8 and gives the ML estimator of σ.

Substituting the values of μ and σ from Eq. 8, we obtain:

$$ { \ln }\left[ {p\left( {{\varvec{\theta}}|{\mathbf{x}}_{n} }\right)} \right] = \frac{n}{2}\ln \left( {{\frac{n}{2\pi }}}\right) - \frac{n}{2} - \frac{n}{2}\ln \left[ {\left({{\mathbf{x}}_{n}- {\frac{{{\mathbf{x}}_{n}^{\text{T}}{\mathbf{R}}^{ - 1} {\mathbf{e}}}}{{{\mathbf{e}}^{\text{T}}{\mathbf{R}}^{ - 1} {\mathbf{e}}}}}{\mathbf{e}}}\right)^{\text{T}} {\mathbf{R}}^{ - 1} \left( {{\mathbf{x}}_{n}-{\frac{{{\mathbf{x}}_{n}^{\text{T}} {\mathbf{R}}^{ - 1}{\mathbf{e}}}}{{{\mathbf{e}}^{\text{T}} {\mathbf{R}}^{ - 1}{\mathbf{e}}}}}{\mathbf{e}}} \right)} \right] - \frac{1}{2}\ln\left[ {\det \left( {\mathbf{R}} \right)} \right] = \frac{n}{2}\ln\left( {{\frac{n}{2\pi }}} \right) - \frac{n}{2} + g_{1} (H) $$
(30)

which is a function of H through the matrix R. So we maximize the above single-variable function, or equivalently the function g 1(H), and find \( \hat{H} \).

We may observe that it is not necessary to form the entire matrix R and invert it to compute g 1(H) (It suffices to form a column (ρ0 … ρn−1)T). Since R is a positive definite Toeplitz matrix we can use the Levinson–Trench–Zohar algorithm as described in Musicus (1988). This algorithm can solve the problem of calculating R −1 e and ln[det(R)] using only O(n 2) operations and O(n) storage. In contrast, standard methods such as Gaussian elimination or Choleski decomposition generally require O(n 3) operations and O(n 2) storage. This is of critical importance when the time series size is large and computer memory capacity restricts its ability to solve the problem.

Appendix B: Proof of the bracketing of the H in (0, 1] in the LSV solution

In order to examine the behaviour of \( \hat{\sigma } \) and g 2(H) from Eqs. 21 and 22 we calculate the following limits:

$$ \mathop {\lim }\limits_{H \to 1} {\frac{{\alpha_{12}^{2} (H)}}{{\alpha_{11} (H)}}} = \left[ {\sum\limits_{k = 1}^{k'} {{\frac{{\ln (n/k)k^{2} s^{2(k)} }}{{k^{p} }}}} } \right]^{2} \mathord{\left/ {\vphantom {{} {}}} \right. \kern-\nulldelimiterspace}\sum\limits_{k = 1}^{k'} {{\frac{{\ln (n/k)k^{2} }}{{k^{p} }}}} > 0\;{\text{and}}\;\mathop {\lim }\limits_{H \to 1} {\frac{{\alpha_{12} (H)}}{{\alpha_{11} (H)}}} = \infty $$
(31)

Therefore, there is a possibility that g 2(H) could have a minimum for H = 1 and σ = ∞, when σ tends to infinity from this path: \( \sigma = \sqrt {\alpha_{12}({H})/\alpha_{11} ({H}) } \)

Then \( \begin{gathered}\mathop {\lim }\limits_{H \to 1} {{g}}_{ 2}({{H) = }}\sum\limits_{k = 1}^{k'} {{\frac{{s^{4(k)} }}{{k^{p} }}}- \left( {\sum\limits_{k = 1}^{k'} {{\frac{{\ln (n/k)k^{2}s^{2(k)} }}{{k^{p} }}} } } \right)^{2}\mathord{\left/ {\vphantom{{} {}}} \right. \kern-\nulldelimiterspace}\left( {\sum\limits_{k= 1}^{k'} {{\frac{{\ln (n/k)k^{2} }}{{k^{p} }}}} } \right) }\hfill \\ \hfill \\ \end{gathered} \)

Now we prove e 2(σ, H) attains its minimum for H ≤ 1. The proof is given bellow:

Suppose that H 2 > 1 and σ 2 > 0 (It’s easy to prove that an estimated \( \hat{\sigma } > 0 \) always). Now for any H 1 ∈ (0, 1) we can always find a σ 1 > 0, such that c k (H 1) \( k^{{ 2H_{1} }} \) \( \sigma_{1}^{2} \) − s 2(k) < 0 for every k. For these values of H 1 and σ 1: | c k (H 1) \( k^{{ 2H_{1} }} \) \( \sigma_{1}^{2} \) − s 2(k) | < | c k (H 2) \( k^{{ 2H_{ 2} }} \) \( \sigma_{2}^{2} \) − s 2(k) | for every k. This proves that e 21, H 1) < e 22, H 2). Thus, e 2(σ, H) attains its minimum for H ≤ 1.

Appendix C: Calculation of Fisher Information Matrix’s elements

We can easily calculate the I 12(θ), I 13(θ) and I 23(θ) elements of the Fisher Information Matrix (Robert 2007, p. 129):

$$ {\frac{{\partial { \ln }\left[ {p\left( {{\varvec{\uptheta}}|{\mathbf{x}}_{n} } \right)} \right]}}{\partial \mu }} = -{\frac{1}{{\sigma^{2} }}}\left( {{\mathbf{e}}^{\text{T}} {\mathbf{R}}^{ - 1} e\mu - {\mathbf{x}}_{n}^{\text{T}} {\mathbf{R}}^{ - 1} {\mathbf{e}}} \right) $$
(32)
$$ {\frac{{\partial { \ln }\left[ {p\left( {{\varvec{\uptheta}}|{\mathbf{x}}_{n} } \right)} \right]}}{\partial \sigma }} = - {\frac{n}{\sigma }} + {\frac{1}{{\sigma^{3} }}}\left( {{\mathbf{x}}_{n} - \mu {\mathbf{e}}} \right)^{\text{T}} {\mathbf{R}}^{ - 1} \left( {{\mathbf{x}}_{n} - \mu {\mathbf{e}}} \right) $$
(33)
$$ {\frac{{\partial^2 { \ln }\left[ {p\left( {{\varvec{\uptheta}}|{\mathbf{x}}_{n} } \right)} \right]}}{\partial \mu\, \partial \sigma }} = {\frac{2}{{\sigma^{3} }}}\left( {{\mathbf{e}}^{\text{T}} {\mathbf{R}}^{ - 1} {\mathbf{e}}\mu - {\mathbf{x}}_{n}^{\text{T}} {\mathbf{R}}^{ - 1} {\mathbf{e}}} \right) $$
(34)
$$ {\frac{{\partial^2 { \ln }\left[ {p\left( {{\varvec{\uptheta}}|{\mathbf{x}}_{n} } \right)} \right]}}{\partial \mu\, \partial H}} = {\frac{1}{{\sigma^{2} }}}\left( {\mu {\mathbf{e}}^{\text{T}} {\mathbf{R}}^{ - 1} {\frac{{\partial {\mathbf{R}}}}{\partial H}}{\mathbf{R}}^{ - 1} {\mathbf{e}} - {\mathbf{x}}^{\text{T}}_{n} {\mathbf{R}}^{ - 1} {\frac{{\partial {\mathbf{R}}}}{\partial H}}{\mathbf{R}}^{ - 1} {\mathbf{e}}} \right) $$
(35)
$$ {\frac{{\partial^2 { \ln }\left[ {p\left( {{\varvec{\uptheta}}|{\mathbf{x}}_{n} } \right)} \right]}}{\partial \mu\, \partial H}} = - {\frac{1}{{\sigma^{3} }}}({\mathbf{x}}_{n} - \mu {\mathbf{e}})^{\text{T}} {\mathbf{R}}^{ - 1} {\frac{{\partial {\mathbf{R}}}}{\partial H}}{\mathbf{R}}^{ - 1} ({\mathbf{x}}_{n} - \mu {\mathbf{e}}) $$
(36)

The expectations of the above expressions are easily calculated and give the corresponding elements of the Fisher Information Matrix I(θ).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyralis, H., Koutsoyiannis, D. Simultaneous estimation of the parameters of the Hurst–Kolmogorov stochastic process. Stoch Environ Res Risk Assess 25, 21–33 (2011). https://doi.org/10.1007/s00477-010-0408-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-010-0408-x

Keywords

Navigation