Skip to main content
Log in

Spatial prediction using bivariate exponential distribution

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

In this paper, a certain bivariate exponential distribution is used for the spatial prediction. The unobserved random variable is predicted by the projection onto the space of all linear combinations of the powers, up to degree m, of the observed random variables plus the constant 1. We obtain a solution by assuming that all the bivariate distributions follow Gumbel’s type III or logistic form of bivariate exponential. The method is implemented on two data sets and the results are presented. The predictions are compared with the original values through Mean Structural Similarity (MSSIM) index of Wang et al. (IEEE Trans Image Process 13(4):600–612, 2004). Using the MSSIM index the proposed method is also compared with Ordinary Kriging and with Simple Kriging after normal score transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Armstrong M, Matheron G (1986a) Disjunctive kriging revisited: part I. Math Geo 18(8):711–728

    Article  Google Scholar 

  • Armstrong M, Matheron G (1986b) Disjunctive kriging revisited: part II. Math Geo 18(8):729–742

    Article  Google Scholar 

  • Ashkar F, El Jabi N, Issa M (1998) A bivariate analysis of the volume and duration of low-flow events. Stoch Hydrol Hydraul 12:97–116

    Article  Google Scholar 

  • Brockwell PJ, Davis RA (1987) Time series : theory and methods. Springer, New-York

    Google Scholar 

  • Coles S (2001) An introduction to statistical modeling of extreme values. Springer, London

    Google Scholar 

  • Cressie N (1991) Statistics for spatial data. Wiley, New York

    Google Scholar 

  • Downton F (1970) Bivariate exponential distributions in reliability theory. J R Statist Soc B 32:408–417

    Google Scholar 

  • Efron B (1982) The jackknife, the bootstrap and, other resampling plans. Society of Industrial and Applied Mathematics, CBMS-NSF Monograph 38, SIAM, Philadelphia

  • Gumbel EJ (1960) Bivariate exponential distributions. J Am Stat Assoc 55:689–707

    Article  Google Scholar 

  • Isaaks EH, Srivastava RM (1989) An introduction to applied geostatistics. Oxford University Press, New York

    Google Scholar 

  • Journel AG (1977) Kriging in terms of projections. Math Geo 9(6):563–586

    Article  Google Scholar 

  • Journel AG, Huijbregts CHJ (1978) Mining geostatistics. Academic Press, London

  • Lu JC, Bhattacharyya GK (1991) Inference procedures for a bivariate exponential of Gumbel based on life test of component and system. J Stat Plan Inference 27:383–396

    Article  Google Scholar 

  • Long D, Krzysztofowicz R (1992) Farlie-Gumbel-Morgenstern bivariate densities: are they applicable in hydrology? Stoch Hydrol Hydraul 6:47–54

    Article  Google Scholar 

  • Long D, Krzysztofowicz R (1995) A family of bivariate densities constructed from marginals. J Am Stat Assoc 90(430):739–746

    Article  Google Scholar 

  • Marshall AW, Olkin I (1967) A multivariate exponential distribution. J Am Stat Assoc 62:30–44

    Article  Google Scholar 

  • Matheron G (1976) A simple substitute for conditional expectation: the disjunctive kriging. In: Guarascio M et al (eds) Advanced geostatistics in the mining industry. Proceedings of NATO A.S.I. Reidel & Co., Dordrecht, pp 221–236

  • Nadarajah S (2007) A bivariate gamma model for drought. Water Resour Res 43:W08501. doi:10.1029/2006WR005641

    Article  Google Scholar 

  • Nadarajah S (2008) A bivariate pareto distribution. Stoch Environ Res Risk Assess. doi:10.1007/s00477-008-0260-4

  • Nadarajah S, Gupta AK (2006a) Cherian’s bivariate gamma distribution as a model for drought data. Agrociencia 40:483–490

    Google Scholar 

  • Nadarajah S, Gupta AK (2006b) Friday and Patil’s bivariate exponential distribution with application to drought data. Water Resour Manage 20:749–759

    Article  Google Scholar 

  • Nadarajah S, Kotz S (2006) Sums, products, and ratios for Downton’s bivariate exponential distribution. Stoch Environ Res Risk Assess 20:164–170

    Article  Google Scholar 

  • Pickands J (1981) Multivariate extreme value distributions. Bull Int Stat Inst: 859–878

  • Schlather M, Tawn JA (2003) A dependence measure for multivariate and spatial extreme values: properties and inference. Biometrika 90(1):139–156

    Article  Google Scholar 

  • Singh K, Sing VP (1991) Derivation of bivariate probability density functions with exponential marginals. Stoch Hydrol Hydraul 5:55–68

    Google Scholar 

  • Subramanyam A, Pandalai HS (2004) On the equivalence of the cokriging and kriging systems. Math Geo 36(4):507–523

    Article  Google Scholar 

  • Tawn JA (1988) Bivariate extreme value theory: models and estimation. Biometrika 75(3):397–415

    Article  Google Scholar 

  • Wang Z, Bovik AC (2002) A universal image quality index. IEEE Signal Process Lett 9(3):81–84

    Article  CAS  Google Scholar 

  • Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  • Wang Z (2003) The SSIM index for image quality assessment. Online available: www.ece.uwaterloo.ca/˜z70wang/research/ssim/

  • Yue S (2001a) A bivariate gamma distribution for use in multivariate flood frequency analysis. Hydrol Process 15:1033–1045

    Article  Google Scholar 

  • Yue S (2001b) Applicability of the Nagao-Kadoya bivariate exponential distribution for modeling two correlated exponentially distributed variates. Stoch Environ Res Risk Assess 15:244–260

    Article  Google Scholar 

  • Yue S (2001c) A statistical measure of severity of El Niño events. Stoch Environ Res Risk Assess 15:153–172

    Article  Google Scholar 

  • Yue S, Ouarda TBMJ, Bobée B (2001) A review of bivariate gamma distributions for hydrological application. J Hydrol 246:1–18

    Article  Google Scholar 

  • Yue S, Wang CY (2004) A comparison of two bivarite extreme value distributions. Stoch Environ Res Risk Assess 18:61–66

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. Helwade.

Appendices

Appendix 1

Suppose for some monotone function \({\phi}(\cdot),\) such that Y α = ϕ(Z α) has standard normal distribution. Also it is assumed that all bivariate distributions of Y s and Y (s+h) are given by bivariate normal distribution with correlation coefficient ρ h . Now we will show that the projection of the unobserved r.v. Y 0 on to the space \({{\mathcal{P}}}_n^m\) is same as the projection of Y 0 on to the space of all linear combinations of {Y 1, Y 2,…,Y n }. In other words, the predictor obtained by projecting Y 0 on to the space \({{\mathcal{P}}}_n^m\) reduces to the linear form. This does not follow directly from the fact that, the conditional expectation function of the multivariate normal distribution is linear because here, we only assume that all the bivariate distributions are bivariate normal and do not make any assumption on the multivariate distribution of the process {Y s }. To proceed, define the m-dimensional process \(\{{{\mathbf{X}}}_{\varvec{\alpha}}\}\) such that \({{\mathbf{X}}}_{\varvec{\alpha}} = \{Y_{\alpha}, Y_{\alpha}^2, \ldots, Y_{\alpha}^m \}.\) Now we have data at n locations on m-dimensional process X α. Note that X α,i Y iα . The random variable X α,1 is treated as a primary variable since the estimate of Y 1α is to be sought. The other random variables X α,i for i > 1, are considered as the secondary variables. Autokrigeability condition (see, for example, Subramanyam and Pandalai 2004) states that we can drop all secondary variables from the cokriging equations if the following equation satisfies.

$$ {\frac{{\rm Cov}(X_{\alpha,1}, X_{\alpha + h, i})}{{\rm Cov}(X_{\alpha,1}, X_{\alpha + h, 1})}} = {\frac{{\rm Cov}(Y_{\alpha}, Y_{\alpha + h}^ i)}{{\rm Cov}(Y_{\alpha}, Y_{\alpha + h})}} = \hbox{constant}. $$
(A1.1)

From the bivariate normality of Y α and Y α+h , one can show that

$$ {{\mathbb{E}}}(Y_{\alpha} Y_{\alpha + h }^i) = \left\{\begin{array}{ll} 0, & (i+1) \; \hbox{is}\; \hbox{odd};\\ {\frac{2^{{\frac{i+1}{2}}}\Upgamma({\frac{i+2}{2}})} {\sqrt{\Uppi}}} \rho_h = c_i \rho_h & (i+1) \; \hbox{is} \;\hbox{even}, \end{array}\right. $$

where c i depends only on i and hence independent of lag h. Since Y α is a standard normal variate, \({\rm Cov}(Y_{\alpha}, Y_{\alpha + h }^i) = {{\mathbb{E}}}(Y_{\alpha} Y_{\alpha + h }^i) = c_i \rho_h. \) So the Eq. (A1.1) becomes

$$ {\frac{{\rm Cov}(Y_{\alpha}, Y_{\alpha + h}^i)}{{\rm Cov}(Y_{\alpha}, Y_{\alpha + h})}} ={\frac{c_i \rho_h}{\rho_h}} = c_i, \;\hbox{a constant}. $$

Hence all secondary variables i.e. X α,i Y iα for i > 1, can be dropped from the estimation of Y 0 and thus estimator reduces to the linear form.

Appendix 2

The expectation \({{\mathbb{E}}}(Y_{\alpha}^i Y_{\alpha +h}^j)\) given in the Eq. (7) is derived here. Let (X,Y) follows a bivariate exponential distribution of the Gumbel’s logistic form with the dependence parameter δ. Then the joint survival function is given by the Eq. (7) and the joint density function by

$$ g(x,y)={\rm exp}\left\{-\left(x^{\frac{1}{\delta}} + y^{\frac{1}{\delta}}\right)^{\delta}\right\} \left[x^{{\frac{1}{\delta}}-1} y^{{\frac{1}{\delta}}-1} \left(x^{{\frac{1}{\delta}}} + y^{{\frac{1} {\delta}}}\right)^{\delta - 2}\right]\left(\left(x^{{\frac{1}{\delta}}} + y^{{\frac{1}{\delta}}}\right)^\delta +\left({\frac{1}{\delta}}-1\right)\right). $$

Now consider the transformation,

$$ U = {\frac{X^{{\frac{1}{\delta}}}}{X^{{\frac{1}{\delta}}} + Y^{{\frac{1}{\delta}}}}} \quad S = \left(X^{{\frac{1}{\delta}}} + Y^{{\frac{1}{\delta}}}\right)^{\delta}. $$

Note that U ∈ [0,1] and S ∈ [0, ∞). The inverse transform is

$$ X = U^{\delta} S \quad Y = (1 - U)^\delta S.$$

The Jacobian of the transformation is

$$ |J| = \left|{\frac{\partial(X,Y)}{\partial(U,S)}} \right| = \left| \begin{array}{ll} \delta \; U^{\delta - 1} S & U^\delta\\ - \delta(1-U )^{\delta -1} S & (1-U )^\delta\\ \end{array}\right| =\delta \; S \; U^{\delta - 1} \; (1-U)^{\delta - 1}. $$

The joint density of the transformed variables (U, S) is given by

$$ \begin{aligned} h(u,s) & = g(x,y)|_{(u,s)} |J| \\ \,=\,& {\rm exp}\{-s\} \left(u^{1-\delta} s^{2\left({\frac{1}{\delta}} - 1\right)} (1-u)^{1-\delta} s^{1-{\frac{2}{\delta}}} \right)\left[s+\left({\frac{1}{\delta}}-1\right)\right]\delta \; s \; u^{\delta - 1} \; (1-u )^{\delta-1}\\ & = {\rm exp}\{-s\} \;\delta \;\left[s+\left({\frac{1}{\delta}}-1\right)\right] 1\\ & = h_1(s)\; \; h_2(u), \end{aligned} $$
(A2.1)

where \(h_1(s) = {\rm exp}\{ -s \} \; \delta \; \left[s +({\frac{1} {\delta}} - 1) \right]\) is the marginal distribution of the variable S and h 2(u) = 1 is the marginal distribution of standard Uniform variate U. From the Eq. (A2.1), we can say that the random variables U and S are independent. This implies

$$ \begin{aligned} {\mathbb E}\left( U^{i \delta} S^i (1 - U)^{j \delta} S^j \right) & = {\mathbb E} \left( X^i Y^j \right) \\ & = {\mathbb E}\left( U^{i \delta} (1 - U)^{j \delta} \right) {\mathbb E}\left( S^{(i+j)} \right).\\ \end{aligned} $$
(A2.2)

Now,

$$ \begin{aligned} {\mathbb E}\left( U^{i \delta} (1 - U)^{j \delta} \right) &= \int\limits_0^1 U^{i \delta} (1 - U)^{j \delta} du \\ & = {\frac{\Upgamma(i \delta+1) \Upgamma(j \delta + 1)} {\Upgamma(\delta (i+j) + 2)}}\\ \end{aligned} $$
(A2.3)

and the second term in the Eq. (A2.2) is

$$ \begin{aligned} {\mathbb E}\left( S^{(i+j)} \right) &= \int\limits_0^\infty s^{(i+j)} h_1(s) ds \\ &= \int\limits_0^\infty s^{(i+j)} {\rm exp}\{ -s \} \; \delta \; [ s + ({\frac{1} {\delta}} - 1) ] ds \\ & = \delta \left[ \int\limits_0^\infty s^{(i+j+1)} {\rm exp}\{ -s \} \; ds + \; ({\frac{1}{\delta}} - 1) \int\limits_0^\infty s^{(i+j)} {\rm exp}\{ -s \} ds \right] \\ & = \delta \left[\Upgamma(i+j+2)+\left({\frac{1}{\delta}}-1\right) \Upgamma(i+j+1)\right]. \end{aligned} $$
(A2.4)

From the Eqs. (A2.2), (A2.3), and (A2.4)

$$ {\mathbb E}( X^i Y^j) = {\frac{[({\frac{1}{\delta}}-1) \Upgamma(i+j+1) + \Upgamma(i+j+2)] \Upgamma(i \delta+1) \Upgamma(j \delta + 1)} {{\frac{1}{\delta}} \Upgamma( \delta (i+j)+ 2)}}. $$

Hence the expectation in the Eq. (7).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helwade, D.R., Subramanyam, A. Spatial prediction using bivariate exponential distribution. Stoch Environ Res Risk Assess 24, 271–281 (2010). https://doi.org/10.1007/s00477-009-0316-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-009-0316-0

Keywords

Navigation