Skip to main content
Log in

Statistical evaluation of compositional changes in volcanic gas chemistry: a case study

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

The geochemical analysis of fumarolic gases collected at quiescent and active volcanic systems over time is one of the main tools to understand changes in the state of activity for surveillance and risk assessment. The continuous output of chemical species through fumarolic activity, which characterizes the inter-eruptive intervals, has also a major and general influence on the environment. The mobilization of chemical species due to weathering of volcanic rocks, or the input of gaseous components from fumarolic activity, results in some kind of modification of the environment affecting, in particular, water, soils, and the consequent growth of the plants present in these areas. In this paper, an investigation on the chemical composition of fumarolic gases collected at Vulcano island (Sicily, southern Italy) is performed, with the aim to discover how data changes during the monitored period of time, and to design a strategy for the environmental surveillance of volcanic systems taking into account the nature of the analyzed data. In order to summarize the contribution of all the components that can affect the chemical composition of volcanic gases, a multivariate statistical approach appears to be suitable. Since many of those methods assume independent observations, the possible presence of time-dependent structures should be carefully verified. In this framework, given the compositional nature of geochemical data, we have applied recent theoretical and practical developments in the field of compositional data analysis to work in the correct sample space and to isolate groups of parts responsible for significant changes in the gas chemistry. The proposed approach can be generalized to the investigation of complex environmental systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aitchison J (1982) The statistical analysis of compositional data (with discussion). J R Stat Soc Ser B 44(2):139–177

    Google Scholar 

  • Aitchison J (1986) The statistical analysis of compositional data. Chapman and Hall, London, p 463

    Google Scholar 

  • Aitchison J (1997) The one-hour course in compositional data analysis or compositional data analysis is simple. In: Pawlowsky-Glahn V (ed) Proceedings of IAMG’97—The third annual conference of the international association for mathematical geology, vol I, pp 3–35

  • Aitchison J (1999) Log-ratios and natural laws in compositional data analysis. Math Geol 24(4):365–379

    Article  Google Scholar 

  • Aiuppa A, Inguaggiato S, McGonigle JS, O’Dwyer M, Oppenheimer C, Padgett MJ, Rouwet D, Valenza M (2005) H2S fluxes from M. Etna, Stromboli, and Vulcano (Italy) and implications for the sulfur budget at volcanoes. Geochim Cosmochim Acta 69(7):1861–1871

    Article  CAS  Google Scholar 

  • Barberi F, Innocenti F, Ferrara G, Keller J, Villari L (1974) Evolution of Eolian arc volcanism (Southern Tyrrhenian sea). Earth Planet Sci Lett 21:269–276

    Article  CAS  Google Scholar 

  • Billheimer D, Guttorp P, Fagan W (2001) Statistical interpretation of species composition. J Am Stat Assoc 96(456):1205–1214

    Article  Google Scholar 

  • Buccianti A, Esposito P (2004) Insights into late quaternary calcareous nannoplankton assemblages under the theory of statistical analysis for compositional data. Palaeogeog Palaeoclim Palaeoec 202(3):209–227

    Article  Google Scholar 

  • Buccianti A, Pawlowsky-Glahn V (2005) New perspectives on water chemistry and compositional data analysis. Math Geol 37(7):707–731

    Article  CAS  Google Scholar 

  • Capasso G, Favara R, Fracofonte S, Inguaggiato S (1999) Chemical and isotopic variations in fumarolic discharge and thermal waters at Vulcano Island (Aeolian Islands, Italy) during 1996: evidence of resumed volcanic activity. J Volcanol Geoth Res 88(3):167–175

    Article  CAS  Google Scholar 

  • Capasso G, D’Alessandro W, Favara R, Inguaggiato S, Parello F (2001) Interaction between the deep fluids and the shallow groundwaters on Vulcano Island (Italy). J Volcanol Geoth Res 108(1–4):187–198

    Article  CAS  Google Scholar 

  • Carapezza M, Nuccio PM, Valenza M (1981) Genesis and evolution of the fumaroles of Vulcano (Aeolian Islands, Italy): a geochemical model. Bull Volcanol 44(3):547–563

    CAS  Google Scholar 

  • Cellini Legittimo P, Martini M (1989) The ecological significance of the coexistence of sulphur dioxide and hydrogen sulphide in volcanic fumaroles. Chem Ecol 4:15–20

    Google Scholar 

  • Chayes F (1960) On correlation between variables of constant sum. J Geophys Res 65(12):4185–4193

    Article  Google Scholar 

  • Chiodini G, Cioni R, Marini L (1993) Reactions governing the chemistry of crater fumaroles from Vulcano island, Italy, and implications for volcanic surveillance. Appl Geochem 8:357–371

    Article  CAS  Google Scholar 

  • Chiodini G, Cioni R, Marini L, Panichi C (1995) Origin of the fumaroles fluids of Vulcano Island, Italy and implications for volcanic surveillance. Bull Volcanol 57:99–110

    Google Scholar 

  • Cioni R, D’Amore F (1984) A genetic model for the crater fumaroles of Vulcano Island (Sicily, Italy). Geothermics 13(4):375–384

    Article  CAS  Google Scholar 

  • Cortecci G, Ferrara G, Dinelli E (1996) Isotopic time-variations and variety of sources for sulfur in fumaroles at Vulcano Island, Aeolian Archipelago, Italy. Acta Vulcanologica 8:147–160

    Google Scholar 

  • Cortecci G, Dinelli E, Bolognesi L, Boschetti T, Ferrara G (2001) Chemical and isotopic composition of water and dissolved sulfate from shallow wells on Vulcano Island, Aeolian Archipelago, Italy. Geothermics 30:69–91

    Article  CAS  Google Scholar 

  • Delmelle P, Stix J (2000) Volcanic Gases. In: Encyclopedia of volcanoes. Academic, New York, pp 803–815

  • Di Liberto V, Nuccio PM, Paonita A (2002) Genesis of chlorine and sulphur in fumarolic emissions at Vulcano Island (Italy): assessment of pH and redox conditions in the hydrothermal system. J Volcanol Geoth Res 116:137–150

    Article  Google Scholar 

  • Egozcue JJ, Pawlowsky-Glahn V, Mateu-Figueras G, Barcelo-Vidal C (2003) Isometric logratio transformations for compositional data analysis. Math Geol 35(3):279–300

    Article  Google Scholar 

  • Giggenbach WF (1996) Chemical composition of volcanic gases. In: Scarpa R, Tilling R (eds) Monitoring and mitigation of volcano hazards. Springer, Berlin Heidelberg New York, pp 221–256

    Google Scholar 

  • Jaquet O, Low S, Martinelli B, Dietrich V, Gilby D (2000) Estimation of volcanic hazards based on Cox stochastic processes. Phys Chem Earth 25:221–256

    Google Scholar 

  • Leeman W, Tonarini S, Pennisi M, Ferrara G (2005) Boron isotopic varitions in fumarolic condensates and thermal waters from Vulcano Island, Italy: implications for evolution of volcanic fluids. Geochim Cosmochim Acta 69(1):143–163

    Article  CAS  Google Scholar 

  • Magro G, Pennisi M (1991) Noble gases and nitrogen: Mixing and temporal evolution in the fumarolic fluids of Vulcano, Italy. J Volcanol Geoth Res 47:237–247

    Article  CAS  Google Scholar 

  • Martini M (1993) Water and fire: Vulcano island from 1977 to 1991. Geochem J 27:297–303

    CAS  Google Scholar 

  • Martini M (1996) Chemical characters of the gaseous phase in different stages of volcanism: precursors and volcanic activity. In: Scarpa R, Tilling R (eds) Monitoring and mitigation of volcano hazards. Springer, Berlin Heidelberg New York, pp 200–219

    Google Scholar 

  • Mazor E, Cioni R, Corazza E, Fratta M, Magro G, Matsuo S, Hirabayashi J, Shinohara H, Martini M, Piccardi G, Cellini-Legittimo P (1988) Evolution of fumarolic gases—boundary conditions set by measured parameters: case study at Vulcano, Italy. Bull Volcanol 50:71–85

    Article  CAS  Google Scholar 

  • Montegrossi G, Tassi F, Vaselli O, Buccianti A, Garofalo K (2001) Sulfur species in volcanic gases. Anal Chem 73(15):3709–3715

    Article  PubMed  CAS  Google Scholar 

  • Pawlowsky-Glahn V (2003) Statistical modelling on coordinates. In: Proceedings of the CoDawork’03, compositional data analysis workshop. Universitat de Girona, http://www.ima.udg.es/Activitats/CoDaWork03/. ISBN 84-8458-111-X

  • Pawlowsky-Glahn V, Buccianti A (2002) Visualization and modeling of subpopulations of compositional data: statistical methods illustrated by means of geochemical data from fumarolic fluids. Int J Earth Sci (Geologische Rundschau) 91(2):357–368

    Article  CAS  Google Scholar 

  • Pawlowsky-Glahn V, Egozcue J (2001) Geometric approach to statistical analysis on the simplex. Stoch Environ Res Risk Assess 15(5):384–398

    Article  Google Scholar 

  • Pearson K (1897) Mathematical contributions to the theory of evolution. On a form of spurious correlations which may arise when indices are used in the measurements of organs. Proc R Soc Lond 60:489–498

    Google Scholar 

  • Piccardi G, Cellini-Legittimo P (1983) A sampling and chemical analysis procedure for fumarolic gases. Mikrochim Acta 11:159–167

    Article  Google Scholar 

  • Rollinson HR (1992) Another look at the constant sum problem in geochemistry. Mineral Mag 56(385):469–475

    CAS  Google Scholar 

  • Signorelli S, Buccianti A, Martini M, Piccardi G (1998) Arsenic in fumarolic gases of Vulcano (Aeolian Islands, Italy) from 1978 to 1993: geochemical evidence from multivariate analysis. Geochem J 32:367–382

    CAS  Google Scholar 

  • Symonds R, Gerlach T, Reed M (2001) Magmatic gas scrubbing: implications for volcano monitoring. J Volcanol Geoth Res 108:303–341

    Article  CAS  Google Scholar 

  • Von Eynatten H, Barcelo-Vidal C, Pawlowsky-Glahn V (2003) Modelling compositional changes: the example of chemical weathering of granitoid rocks. Math Geol 35(3):231–251

    Article  Google Scholar 

  • Ward J (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assess 58:236–244

    Article  Google Scholar 

Download references

Acknowledgements

This research has been financially supported by the Felix Chayes Prize 2003 (A.B.) of the International Association for Mathematical Geology, by Italian MIUR (Ministero dell’Istruzione, dell’Università e della Ricerca Scientifica e Tecnologica), PRIN 2004, through the project GEOBASI (prot. 2004048813–002), and by the Dirección General de Enseñanza Superior (DGES) of the Spanish Ministry for Education and Culture through the project BFM2003-05640/MATE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Buccianti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buccianti, A., Pawlowsky-Glahn, V. Statistical evaluation of compositional changes in volcanic gas chemistry: a case study. Stoch Environ Res Ris Assess 21, 25–33 (2006). https://doi.org/10.1007/s00477-006-0041-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-006-0041-x

Keywords

Navigation