Skip to main content
Log in

Assessment of genetic diversity of local Tunisian peach accessions [Prunus persica (L.) Batsch] using SSR markers

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

This work belongs to the Tunisian conservation strategies of local fruit tree resources. Results highlighted the important genetic richness of Tunisian peach as an unexplored source for peach future breeding.

Abstract

Tunisia is characterized by a rich genetic heritage of fruit trees. Nevertheless, local Tunisian accessions of different fruit crops face several threats that are causing a dramatic loss of some of these valuable landraces. This study was conducted to evaluate the genetic diversity and population structure of 23 Tunisian peach accessions using 27 microsatellite (SSR) loci. These Tunisian accessions were compared with accessions from America, mainland Spain and the island of La Palma (Canary Islands, Spain). A considerable genetic diversity was observed in Tunisian genotypes with allelic richness value of 0.47. The genetic richness was 0.37 in La Palma genotypes, 0.3 in mainland Spain and 0.38 in the American genotypes. Eight private alleles were obtained in the Tunisian genotypes, while six were observed in the mainland Spanish pool, five in the American pool and six in the La Palma pool. Structure analyses and similarity dendrogram based on SSRs were clearly consistent with a geographic structuring and highlighted the different introduction pathways of Prunus persica into Tunisia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statements

Authors declare that all data are included within the manuscript and fully available without restriction.

References

  • Abbott A, Arús P, Scorza R (2007) Peach. In: Chittaranjan K (ed) Genome mapping and molecular breeding in plants, fruits and nuts. Springer, Heidelberg, pp 137–156

    Google Scholar 

  • Abdallah D, Baraket G, Ben Tamarzizt H, Ben Mustapha S, Salhi-Hannachi A (2016) Identification, evolutionary patterns and intragenic recombination of the gametophytic self incompatibility pollen gene (SFB) in Tunisian Prunus species (Rosaceae). Plant Mol Biol Rep 34:339–352

    Article  Google Scholar 

  • Abdallah D, Baraket G, Pérez V, Ben Mustapha S, Salhi Hannachi A, Hormaza JI (2019) Analysis of self-incompatibility and genetic diversity in diploid and hexaploid plum genotypes. Front Plant Sci 10:896

    Article  PubMed  PubMed Central  Google Scholar 

  • Abdallah D, Baraket G, Pérez V, Salhi Hannachi A, Hormaza JI (2020) Self-compatibility in peach [Prunus persica (L.) Batsch]: patterns of diversity surrounding the S-locus and analysis of SFB alleles. Hortic Res 7:170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aouadi M, Guenni K, Abdallah D, Louati M, Salhi-Hannachi A (2019) Application of conserved DNA-derived polymorphism markers (CDDP) to assess the genetic diversity in Tunisian pistachio [Pistacia vera L.; Anacardiaceae]. Physiol Mol Biol Plants 25(5):1211–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aranzana MJ, Pineda A, Cosson P, Dirlewanger E, Ascasibar J, Cipriani G, Ryder CD, Testolin R, Abbot A, King GJ, Iezzoni AF, Arùs P (2003) A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor Appl Genet 106:819–825

    Article  CAS  PubMed  Google Scholar 

  • Aranzana MJ, Abbassi EK, Howad W, Arús P (2010) Genetic variation, population structure and linkage disequilibrium in peach commercial varieties. BMC Genet 11:69

    Article  PubMed  PubMed Central  Google Scholar 

  • Aranzana MJ, Decroocq V, Dirlewanger E, Eduardo I, Zhong SG, Gasic K, Iezzoni A, Jung S, Peace C, Prieto H, Tao R, Verde I, Abbott A, Arús P (2019) Prunus genetics and applications after de novo genome sequencing: achievements and prospects. Hortic Res 6:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Arunyawat U, Capdeville G, DecroocqV MS (2012) Linkage disequilibrium in French wild cherry germoplasm and worldwide sweet cherry germoplasm. Tree Genet Genom 8:737–755

    Article  Google Scholar 

  • Baraket G, Abdallah D, Ben Mustapha S, Salhi-Hannachi A (2019) Combination of simple sequence repeat, S-locus polymorphism and morphology to draw a taxonomic Key for Tunisian plum species (Prunus.spp). Biochem Genet 57(5):673–694

    Article  CAS  PubMed  Google Scholar 

  • Baraket G, Abdallah D, Boukhalfa Y, Ben Mustapha S, Salhi-Hannachi A (2021) Analysis of genetic diversity and water-stress tolerance in Tunisian plums [Prunus.spp; Rosacea]. Sci Hort 285(1):110141

    Article  CAS  Google Scholar 

  • Baránek M, Raddova J, Pidra M (2006) Comparative analysis of genetic diversity in Prunus L. as revealed by RAPD and SSR markers. Scientia Hort 108:253–259

    Article  Google Scholar 

  • Baris E, Bedő J, Edosa OS, Kiss E, Veres A (2017) Preliminary results of SSR based characterization of sour (Prunus cerasus L.) and sweet cherry (Prunus avium L.) genotypes cultivated in Hungary. Columella 4:31–45

    Article  Google Scholar 

  • Barnaud A, LaucouV TP, Lacombe T, Doligez A (2010) Linkage disequilibrium in wild French grapevine, Vitis vinifera L. Sub Sp Silvestris Hered 104:431–437

    CAS  Google Scholar 

  • Ben Abdallah H, Laajimi A, Guesmi F, Triki T, Ferchichi A, Hormaza JI, Larranaga N (2020) Genetic diversity of endangered date palm (Phoenix dactylifera L.) in the oases of Nefzaoua, Tunisia, using SSR markers. Fruits 75(2):84–91

  • Besnard G, El Bakkali A, Haouane H, Baali-Cherif D, Moukhli A, Khadari B (2013) Population genetics of Mediterranean and Saharan olives: geographic patterns of differentiation and evidence for early generations of admixture. Ann Bot 112:1293–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao K, Wang L, Zhu G, Fang W, Chen C, Luo J (2012) Genetic diversity, linkage disequilibrium, and association mapping analyses of peach (Prunus persica) landraces in China. Tree Genet Genom 8:975–990

    Article  Google Scholar 

  • Carrasco B, Díaz C, Moya M, Gebauer M, García-González R (2012) Genetic characterization of Japanese plum cultivars (Prunus salicina) using SSR and ISSR molecular markers. Cien Inv Agr 39:533–543

    Article  Google Scholar 

  • Chen W, Wang L, Zhang S, Chen C, Cao K (2007) Genetic diversity analysis of peach (Prunus persica) cultivars introduced from different countries by SSR (in Chinese). J Fruit Sci 24:580–584

    Google Scholar 

  • Chikh-Rouhou H, Mezghani N, Mnasri S, Mezghani N, Garcés-Claver A (2021) Assessing the genetic diversity and population Structure of a Tunisian melon (Cucumis melo L,) collection using phenotypic traits and SSR molecular markers. Agronomy 11:1121

    Article  Google Scholar 

  • Dettori MT, Quarta R, Verde I (2001) A peach linkage map integrating RFLPs, SSRs, RAPDs, and morphological markers. Genome 44:783–790

    Article  CAS  PubMed  Google Scholar 

  • Dettori MT, Micali S, Giovinazzi J, Scalabrin S, Verde I, Cipriani G (2015) Mining microsatellites in the peach genome: development of new long-core SSR markers for genetic analyses in five Prunus species. Springer plus 4:337

    Article  PubMed  PubMed Central  Google Scholar 

  • Dirlewanger E, Graziano E, Joobeur T, Garriga-Calderé F, Cosson P, Howard W, Arùs P (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci USA 101:9891–9896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Earl DA, VonHoldt BM (2012) Structure Harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Cons Genet Res 4:359–361

    Article  Google Scholar 

  • Entani T, Iwano M, Shiba H, Che FS, Isogai A, Takayama S (2003) Comparative analysis of the self-incompatibility ( S-) locus region of Prunus mume: identification of a pollen-expressed-box gene withallelic diversity. Genes Cells 8:203–213

    Article  CAS  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) ARLEQUIN. Ver 3.0. An integrated software package for population genetic data analysis. Evol Bioinform Online 1:47–50

    Article  CAS  Google Scholar 

  • Fathi A, Ghareyazi B, Haghnazari A, Ghaffari MR, Pirseyedi SM, Kadkhodaei S, Naghavi MR, Mardi M (2008) Assessment of the genetic diversity of almond (Prunus dulcis) using microsatellite markers and morphological traits. Iranian J Biotech 6:98–106

    CAS  Google Scholar 

  • Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle

  • Frankham R, BallouJ, Briscoe D, Mclnnes K (2002) Introduction to conservation genetics. https://doi.org/10.1017/CB09780511808999

  • Guenni K, Aouadi M, Chatti K, Salhi-Hannachi A (2016) Analysis of genetic diversity of Tunisian pistachio (Pistachio vera L.) using sequence-related amplified polymorphism (SRAP) markers. Genet Mol Res. https://doi.org/10.4238/gmr15048760

    Article  PubMed  Google Scholar 

  • Gürcan K, Öcal N, Yılmaz KU, Ullah S, Erdoğan A, Zengin Y (2015) Evaluation of Turkish apricot germplasm using SSR markers: Genetic diversity assessment and search for Plum pox virus resistance alleles. Sci Hortic 193:155–164

    Article  Google Scholar 

  • Hancock JF, Scorza R, Lobos GA (2008) Peaches. Chapter https://doi.org/10.1007/978-1-4020-6907-9-9

  • Hormaza JI (2002) Molecular characterization and similarity relationships among apricot (Prunus armeniaca L.) genotypes using simple sequence repeats. Theor Appl Genet 104:321–328

    Article  CAS  PubMed  Google Scholar 

  • Howard W, Yamamoto T, Dierlewanger E, Testolin R, Cosson P, Cipriani G, Monforte AJ, Georgi L, Abbot AG, Arùs P (2005) Mapping with a few plants: using selective mapping for microsatellite saturation of the Prunus reference map. Genetics 171:1305–1309

    Article  Google Scholar 

  • Jakobsson M, Rosenberg N (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Joobeur T, Virtuel MA, de Vicente MC, Jauregui B, Ballester J, Dettori MT, Verde I, Truco MJ, Messeguer R, Batlle I (1998) Construction of a saturated linkage map for Prunus using an almond x peach F2 progeny. Theor Appl Genet 97:1034–1041

    Article  CAS  Google Scholar 

  • Joobeur T, Periam N, de Vicente MC, King GJ, Arus P (2000) Development of a second generation linkage map for almond using RAPD and SSR markers. Genome 43:649–655

    Article  CAS  PubMed  Google Scholar 

  • Lewis PO, Zaykin D (2001) Genetic data analysis: computer program for the analysis of allelic data. Version 1.0. Free program distributed by the authors over the internet from http://lewis.eeb.uconn.edu/lewishome/software.html.

  • Li XW, Meng XQ, Jia HJ, Yu ML, Ma RJ, Wang LR, Cao K, Shen ZJ, Niu L, Tian JB, Chen MJ (2013) Peach genetic resources: diversity, population Structure and linkage disequilibrium. BMC Genet 14:1–16

    Article  Google Scholar 

  • Maghuly F, Fernandez EB, Ruthner S, Pedryc A, Laimer L (2005) Microsatellite variability in apricots (Prunus armeniaca L.) reflects their geographic origin and breeding history. Tree Genet Genom 1:151–165

    Article  Google Scholar 

  • Marchese A, Tobutt KR, Caruso T (2005) Molecular characterisation of Sicilian Prunus persica cultivars using microsatellites. J Hort Sci Biotechnol 80:121–129

    Article  CAS  Google Scholar 

  • Marchese A, Tobutt KR, Caruso T (2006) The Sicilian peach (Prunus persica L. Batsch) germplasm: Evaluation of genetic diversity using SSRs. Acta Hort 713:135–138

    Article  CAS  Google Scholar 

  • Mariette S, Tai WJ, Roch F, Barre G, Chague A, Decroocq A et al (2016) Genome-wide association links candidate genes to resistance to Plum Pox Virus in apricot (Prunus armeniaca). New Phytol 209:773–784

    Article  CAS  PubMed  Google Scholar 

  • Nabli M (2011) La flore de la Tunisie, Mise à jour 2011

  • Ouni R, Zborowska A, Sehic J, Choulak S, Hormaza JI, Garkava-Gustavsson L, Mars M (2020) Genetic diversity and structure of Tunisian local pear germplasm as revealed by SSR markers. Hortic Plant J 6(2):61–70

    Article  Google Scholar 

  • Pérez V, Larrañaga N, Abdallah D, Hormaza JI (2020) Genetic diversity of local peach accessions from La Palma Island (Canary Islands, Spain). Agronomy 10:457

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population Structure using multilocus genotype data. Genetics 155:945–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Razifard H, Ramos A, Della Valle AL, Bodary C, Goetz E, Manser EJ et al (2020) Evidence for complex domestication history of the cultivated tomato in Latin America. Mol Biol Evol 37:1118–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rojas G, Méndez MA, Muñoz C, Lemus G, Hinrichsen P (2008) Identification of a minimal microsatellites marker panel for the fingerprinting of peach and nectarine cultivars. Electron J Biotech 11:1–12

    Article  Google Scholar 

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Saddoud Debbabi O, Montemurro C, Ben Maachia S, Ben Amar F, Fanelli F, Gadaleta S, El Riachy M, Chehade A, Siblini M, Boucheffa S et al (2020) A hot-spot of olive biodiversity in the Tunisian oasis of Degache. Diversity 12:358

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sanchez-Pérez R, Dicenta F, Martinez-Gomez P, Howad W, Arus P (2006) Construction of a linkage map and QTL analysis of agronomic traits in almond using SSR Markers. Acta Hort 726:89–92

    Article  Google Scholar 

  • Sanchez-Pérez R, Howard W, Garcia-Mas J, Arùs P, Martinez-Gomez P, Dicenta F (2010) Molecular markers for kernel bitterness in almond. Tree Gen Genom 6:237–245

    Article  Google Scholar 

  • Scorza R, Sherman WB (1996) Peaches. In: Janick J, Moore JN (Eds.), Fruit breeding Vol. I. Tree and Tropical Fruits. John Wiley & Sons, Inc., New York, U.S.A., pp. 325–440

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urrestarazu J, Denancé C, Ravon E, Guyader A, Guisnel R, Feugey L (2016) Analysis of the genetic diversity and Structure across a wide range of germplasm reveals prominent gene flow in apple at the European level. BMC Plant Biol 16:130

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiersma PA, Wu Z, Zhou L, Hampson C, Kappel F (2001) Identification of new self-incompatibility alleles in sweet cherry (Prunus avium L.) and clarification ofincompatibility groups by PCR and sequencing analysis. Theor Appl Genet 102:700–708

    Article  CAS  Google Scholar 

  • Wünsch A, Hormaza JI (2004) S-allele identification by PCR analysis in sweet cherry cultivars. Plant Breed 123:327–331

    Article  Google Scholar 

  • Wünsch A, Carrera M, Hormaza JI (2006) Molecular characterization of local Spanish peach [Prunus persica (L.) Batsch] germplasm. Genet Resour Crop Evol 53:925–932

    Article  Google Scholar 

  • Yamamoto T, Mochida K, Hayashi T (2003a) Shanhai Suimitsuto, one of the origins of Japanese peach cultivars. J Jpn Soc Hort Sci 72:116–121

    Article  CAS  Google Scholar 

  • Yamamoto T, Mochida K, Imai T, Haji T, Yaegaki H, Yamaguchi M, Matsuta N, Ogiwara I, Hayashi T (2003b) Parentage analysis in Japanese peaches using SSR markers. Breeding Sci 53:35–40

    Article  CAS  Google Scholar 

  • Yoon JH, Liu DC, Song WS, Liu WS, Zhang AM, Li SH (2006) Genetic diversity and ecogeographical phylogenetic relationships among peach and nectarine cultivars based on simple sequence repeat (SSR) markers. J Amer Soc Hort Sci 131:513–521

    Article  CAS  Google Scholar 

  • Zeinalabedini A, Majourhat K, Khayam-Nekoui M, Grigorian V, Torchi M, Dicenta F, Martinez-Gomez P (2008) Comparison of the use of morphological, protein and DNA markers in the genetic characterization of Iranian wild Prunus species. Scientia Hort 116:80–88

    Article  CAS  Google Scholar 

  • Zhang Q et al (2012) The genome of Prunus mume. Nat Commun 3:1318

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to gratefully thank Tunisian farmers, La Palma island farmers, and the CITA of Zaragoza (Spain), for kindly providing plant material. We express our gratitude to “Yolanda Verdún”, for technical support.

Funding

This research was supported by the Tunisian “Ministère de l’Enseignement Supérieur et de la Recherche Scientifique” and Grant PID2019-109566RB-I00 and PID2022-141851OB-I00 funded by MICIU/AEI/https://doi.org/10.13039/501100011033 and ERDF A way of making Europe, by the European Union.

Author information

Authors and Affiliations

Authors

Contributions

DA conducted the experiments and statistical analyses, developed the genetic analyses, and wrote the manuscript. GB provided some plant material, and discussed and corrected the content. VP provided some plant material and discussed the results. SBM discussed the results. AS-H and JH provided experimental instructions, supervised the work, and assisted in writing the manuscript.

Corresponding author

Correspondence to Donia Abdallah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Carlson.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdallah, D., Baraket, G., Pérez, V. et al. Assessment of genetic diversity of local Tunisian peach accessions [Prunus persica (L.) Batsch] using SSR markers. Trees (2024). https://doi.org/10.1007/s00468-024-02520-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00468-024-02520-x

Keywords

Navigation