Skip to main content
Log in

Effect of water stress and UV-B on the production of outer stem waxes of Bulnesia retama seedlings from different eco-regions: alternatives for non-timber resources in drylands

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

The yield of epicuticular waxes of Bulnesia retama was increased mainly by water stress, and marginally by UV-B. Natural populations from the most stressful ecoregions showed higher productivity and plasticity.

Abstract

Bulnesia retama is a tree/shrub endemic to the arid and semi-arid zones of South America. This species produces outer stem waxes that can be used in industry, and has been exploited in the past degrading natural populations. Considering the need to diversify marginal dryland economies by making sustainable use of local resources, we aimed to study the productivity of outer stem waxes of natural populations of B. retama from three eco-regions with different environmental stress (rainfall and altitude). We studied the wax productivity of the three populations in response to water stress and UV-B. We conducted two pot experiments with seedlings propagated from seeds of the different environmental backgrounds. We regulated water availability by differential irrigation and manipulated UV-B using selective absorbance filters. We collected stem waxes by the traditional method of brushing dry stems. We found that water stress was the main promoter of stem wax production in this species, while the effect of UV-B was marginal, and was only detected in combination with water stress. Seedlings from the most stressful eco-regions showed the highest stem wax productivity and were the most plastic to variations in environmental conditions. Environmental stress, particularly water stress, was the determining factor in the outer stem wax yield of this species, and in the productive potential of different natural populations, which could be related to ecotypes with different wax yield potential. This knowledge can be used for exploiting this resource sustainably, to select ecotypes for cultivation, and to develop productive varieties through classical breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data sets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Alpert P, Simms EL (2002) The relative advantages of plasticity and fixity in different environments: when is it good for a plant to adjust? Evol Ecol 16:285–297

    Article  Google Scholar 

  • Bandurska H, Niedziela J, Chadzinikolau T (2013) Separate and combined responses to water deficit and UV-B radiation. Plant Sci 213:98–105

    Article  CAS  PubMed  Google Scholar 

  • Barnes JD, Percy KE, Paul ND, Jones P, McLaughlin CK, Mullineaux PM, Creissen G, Wellburn AR (1996) The influence of UV-B radiation on the physicochemical nature of tobacco (Nicotiana tabacum L.) leaf surfaces. J Exp Bot 47:99–109

    Article  CAS  Google Scholar 

  • Barthlott W, Neinhus C, Cutler D, Ditsch F, Meusel I, Theisen I, Wilhelm H (1998) Classification and terminology of plant epicuticular waxes. Bot J Linn Soc 126:237–260

    Article  Google Scholar 

  • Berli FJ, Moreno D, Píccoli P, Hespanhol-Viana L, Silva MF, Bressan-Smith R, Cavagnaro JB, Bottini R (2010) Abscisic acid is involved in the response of grape (Vitis vinifera L.) cv. Malbec leaf tissues to ultraviolet-B radiation by enhancing ultraviolet-absorbing compounds, antioxidant enzymes and membrane sterols. Plant Cell Environ 33:1–10

    CAS  PubMed  Google Scholar 

  • Bianchi AR, Cavero SAC (2010) Atlas climático digital de la República Argentina. Ediciones INTA; Estación Experimental Agropecuaria Salta. ISBN 978-987-1623-95-2

  • Biruk LN, Fernández ME, González CV, Guevara A, Rovida-Kojima E, Giordano CV (2022) High and diverse plastic responses to water availability in four desert woody species of South America. Trees 36:1881–1894

    Article  CAS  Google Scholar 

  • Blumthaler M, Ambach W, Ellinger R (1997) Increase in solar UV radiation with altitude. J Photochem Photobiol B 39(2):130–134

    Article  CAS  Google Scholar 

  • Bondada BR, Oosterhuis BM, Murphy JB, Kim KS (1996) Effect of water stress on the epicuticular wax composition and ultrastructure of cotton (Gossypium hirsutum L.) leaf, bract and boll. Environ Exp Bot 36:61–69

    Article  CAS  Google Scholar 

  • Caldwell MM, Robberecht R, Flint SD (1983) Internal filters: prospects for UV-acclimation in higher plants. Physiol Plant 58:445–450

    Article  CAS  Google Scholar 

  • Cameron KD, Teece MA, Smart LB (2006) Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol 140:176–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Martonne E (1926) Une nouvelle function climatologique: L’indice d’aridité. Meteorologie 2:449–459

    Google Scholar 

  • Di Rienzo JA, Casanoves F, Balzarini MG, González L, Tablada M, Robledo CW (2018) Infostat versión 2018. Centro de Transferencia InfoSat, FCA, Universidad Nacional de Córdoba, Córdoba

  • Díaz Bisutti G, Ordoñez C, Ribas Y, Dalmasso A (2015) Retamo: Testigo del Desierto, 1st edn. San Juan Editorial, New York

    Google Scholar 

  • Dodd R, Poveda MM (2003) Environmental gradients and population divergence contribute to variation in cuticular wax composition in Juniperus communis. Biochem Syst Ecol 31:1257–1270

    Article  CAS  Google Scholar 

  • FAO (1999) Parte I: situación y perspectivas de la conservación y desarrollo de los bosques. Situación de los bosques del mundo 1999. FAO, Roma. p 47

  • Gonzalez R, Paul ND, Percy K, Ambrose M, McLaughlin CK, Barnes JD, Areses M, Wellburn AR (1996) Responses to ultraviolet-B radiation (280–315 nm) of pea (Pisum sativum) lines differing in leaf surface wax. Physiol Plant 98:852–860

    Article  CAS  Google Scholar 

  • González MA, de Cózar A, Prieto P, Domínguez E, Heredia A (2022) Radiationless mechanisms of UV deactivation by cuticle phenolics in plants. Nat Commun 13:1786

    Article  Google Scholar 

  • Gordon DC, Percy KE, Riding RT (1998) Effects of UV-B radiation on epicuticular wax production and chemical composition of four Picea species. New Phytol 138:441–449

    Article  CAS  Google Scholar 

  • Grant RH, Heisler GM, Gao W, Jenks M (2003) Ultraviolet leaf reflectance of common urban trees and the prediction of reflectance from leaf surface characteristics. Agric For Meteorol 120:127–139

    Article  Google Scholar 

  • Guevara A, Giordano CV (2015) Hydrotropism in lateral but not in pivotal roots of desert plant species under simulated natural conditions. Plant Soil 389:257–272

    Article  CAS  Google Scholar 

  • Guevara A, Pancotto V, Mastrantonio L, Giordano CV (2018) Fine roots of Prosopis flexuosa trees in the field: plant and soil variables that control their growth and depth distribution. Plant Ecol 219:1399–1412

    Article  Google Scholar 

  • Hoffmann B, Kahmen A, Cernusak LA, Arndt SK, Sachse D (2013) Abundance and distribution of leaf wax n-alkanes in leaves of Acacia and Eucalyptus trees along a strong humidity gradient in northern Australia. Org Geochem 62:62–67

    Article  CAS  Google Scholar 

  • Holmes MG, Keiller DR (2002) Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands: a comparison of a range of species. Plant Cell Environ 25:85–93

    Article  CAS  Google Scholar 

  • Jetter R, Kunst L (2008) Plant surface lipid biosynthetic pathways and their utility for metabolic engineering of waxes and hydrocarbon biofuels. Plant J 54:670–683

    Article  CAS  PubMed  Google Scholar 

  • Johnson DA, Richards RA, Turner NC (1983) Yield, water relations, gas exchange, and surface reflectance of near-isogenic wheat lines differing in glaucousness. Crop Sci 24:318–325

    Article  Google Scholar 

  • Jordan WR, Monk RL, Miller FR, Rosenow DT, Clark LE, Shouse PJ (1983) Environmental physiology of sorghum. I. environmental and genetic control of epicuticular wax load. Crop Sci 23:552–558

    Article  Google Scholar 

  • Karabourniotis G, Liakopoulos G, Bresta P, Nikolopoulos D (2021) The optical properties of leaf structural elements and their contribution to photosynthetic performance and photoprotection. Plants 10:1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkham MB (2023) Principles of soil and plant water relations. Elsevier, Amsterdam

    Google Scholar 

  • Koch K, Ensikat H-J (2008) The hydrophobic coatings of plant surfaces: epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly. Micron 39:759–772

    Article  CAS  PubMed  Google Scholar 

  • Le Provost G, Domergue F, Lalanne C, Ramos CP, Grosbois A, Bert D, Meredieu C, Danjon F, Plomion C, Gion JM (2013) Soil water stress affects both cuticular wax content and cuticle-related gene expression in young saplings of maritime pine (Pinus pinaster Ait). BMC Plant Biol 13:1–12

    Article  Google Scholar 

  • Lecomte J (2009) Les cires végétales: sources et applications. Oléagineux, Corps Gras, Lipides 16:262–266

    Article  Google Scholar 

  • Lewandowska M, Keyl A, Feussner I (2020) Wax biosynthesis in response to danger: its regulation upon abiotic and biotic stress. New Phytol 227:698–713

    Article  CAS  PubMed  Google Scholar 

  • Li HJ, Bai WP, Liu LB, Liu HS, Wei L, Garant TM, Kalinger RS, Deng YX, Wang GN, Bao AK, Ma Q, Rowland O, Wang SM (2023) Massive increases in C31 alkane on Zygophyllum xanthoxylum leaves contribute to its excellent abiotic stress tolerance. Ann Bot 131:723–736

    Article  PubMed  PubMed Central  Google Scholar 

  • Manetas Y, Petropoulou Y, Stamatakis K, Nikolopoulos D, Levizou E, Psaras G, Karabourniotis G (1997) Beneficial effects of enhanced UV-B radiation under field conditions: improvement of needle water relations and survival capacity of Pinus pinea L. seedlings during the dry Mediterranean summer. Plant Ecol 128:101–108

    Article  Google Scholar 

  • Martínez-Ballesté A, Mandujano MC (2013) The consequences of harvesting on regeneration of a non-timber wax producing species (Euphorbia antisyphilitica Zucc.) of the Chihuahuan Desert. Econ Bot 67:121–136

    Article  Google Scholar 

  • Morello J, Matteucci SD, Rodríguez AF, Silva M (2018) Ecorregiones y complejos ecosistémicos argentinos. 2nd edn. Universidad de Buenos Aires, Facultad de Arquitectura, Diseño y Urbanismo. Orientación Gráfica Editora, Buenos Aires

  • Müller C, Riederer M (2005) Plant surface properties in chemical ecology. J Chem Ecol 31(11):2621–2651. https://doi.org/10.1007/s10886-005-7617-7

    Article  CAS  PubMed  Google Scholar 

  • Palacios RA, Hunziker JH (1984) Revisión taxonómica del género Bulnesia (Zygophyllaceae). Darwiniana 25:299–320

    Google Scholar 

  • Passera CB, Dalmasso AD, Borsetto O (1983) Método del point-quadrat modificado. Taller de arbustos forrajeros para zonas áridas y semiáridas 2:71–79

    Google Scholar 

  • Pfeifer MT, Koepke P, Reuder J (2006) Effects of altitude and aerosol on UV radiation. J Geophys Res Atmos. https://doi.org/10.1029/2005JD006444

    Article  Google Scholar 

  • Prado FE, Rosa M, Prado C, Podazza G, Interdonato R, González JA, Hilal M (2012) UV-B radiation, its effects and defence mechanisms in terrestrial plants. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, Berlin, pp 57–83

    Chapter  Google Scholar 

  • Premachandra GS, Saneoka H, Kanaya M, Ogata S (1991) Cell membrane stability and leaf surface wax content as affected by increasing water deficits in maize. J Exp Bot 42:167–171

    Article  CAS  Google Scholar 

  • Qaderi MM, Basraon NK, Chinnappa CC, Reid DM (2010) Combined effects of temperature, ultraviolet-B radiation, and watering regime on growth and physiological processes in canola (Brassica napus) seedlings. Int J Plant Sci 171:466–481

    Article  CAS  Google Scholar 

  • Richards RA, Rawson HM, Johnson DA (1986) Glaucousness in wheat: its development and effect on water-use efficiency, gas exchange, and photosynthetic tissue temperatures. Aust J Plant Physiol 13:465–473

    Google Scholar 

  • RStudio Team (2022) RStudio: Integrated Development for R. RStudio, PBC, Boston, MA. http://www.rstudio.com/

  • Samuels L, Kunst L, Jetter R (2008) Sealing plant surfaces: cuticular wax formation by epidermal cells. Annu Rev Plant Biol 59:683–707

    Article  CAS  PubMed  Google Scholar 

  • Scholander PF, Bradstreet ED, Hemmingsen EA, Hammel HT (1965) Sap Pressure in Vascular Plants: negative hydrostatic pressure can be measured in plants. Science 148:339–346

    Article  CAS  PubMed  Google Scholar 

  • Scora GA, Ahmed M, Scora RW (1995) Epicuticular hydrocarbons of candelilla (Euphorbia antisiphylitica) from three different geographical areas. Ind Crops Prod 4:179–184

    Article  CAS  Google Scholar 

  • Shaheenuzzamn M, Shi S, Sohail K, Wu H, Liu T, An P, Wang Z, Hasanuzzaman M (2021) Regulation of cuticular wax biosynthesis in plants under abiotic stress. Plant Biotechnol Rep 15:1–12

    Article  CAS  Google Scholar 

  • Shepherd T, Wynne Griffiths D (2006) The effects of stress on plant cuticular waxes. New Phytol 171:469–499

    Article  CAS  PubMed  Google Scholar 

  • Stotz GC, Salgado-Luarte C, Escobedo VM, Valladares F, Gianoli E (2021) Global trends in phenotypic plasticity of plants. Ecol Lett 24:2267–2281

    Article  PubMed  Google Scholar 

  • Tevini M, Steinmüller D (1987) Influence of light, UV-B radiation, and herbicides on wax biosynthesis of cucumber seedling. J Plant Physiol 131:111–121

    Article  CAS  Google Scholar 

  • Tinto JC, Pardo L (1957) Ceras vegetales argentinas. Cera de retamo (Bulnesia retama). Revista Investigaciones Forestales. Tomo 1 N° 1–2

  • Tinto WF, Elufioye TO, Roach J (2017) Waxes. In: Badal S, Delgoda R (eds) Pharmacognosy. Academic Press, Cambridge, pp 443–455

    Chapter  Google Scholar 

  • Vilela A, Bolkovic ML, Carmanchahi P, Cony M, De Lamo D, Wassner D (2009) Past, present and potential uses of native flora and wildlife of the Monte Desert. J Arid Environ 73:238–243

    Article  Google Scholar 

  • Vilela AE, González-Paleo L, Ravetta DA (2011) Metabolismo secundario de plantas leñosas de zonas áridas: mecanismos de producción, funciones y posibilidades de aprovechamiento. Ecol Austral 21:317–327

    Google Scholar 

  • Villa-Castorena M, Catalán-Valencia EA, Inzunza-Ibarra MA, de González-López ML, Arreola JG (2010) Production of candelilla seedlings (Euphorbia antisiphyllitica Zucc.) by cuttings. Revista Chapingo Serie Ciencias Forestales y del Ambiente 16:37–47

    Article  Google Scholar 

  • Xu H, Gauthier L, Gosselin A (1995) Stomatal and cuticular transpiration of greenhouse tomato plants in response to high solution electrical conductivity and low soil water content. J Am Soc Hortic Sci 120:417–422

    Article  Google Scholar 

  • Yeats TH, Rose JK (2013) The formation and function of plant cuticles. Plant Physiol 163:5–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank E. Barrio, F. González, C. Moreno, S. Papú, D. Zeverini, H. De Bandi, G. Zalazar, J. C. Gómez, M.I. Cona and the members of the Plant Ecophysiology Research Network (RIEV), for their collaboration in the installation and maintenance of the experiment, and for their technical assistance.

Funding

This research was funded by the “Consejo Nacional de Investigaciones Científicas y Técnicas” (CONICET, Argentina) and Gobierno de San Juan, Argentina (PIO CONICET-SECITI 15020150100077CO) to Roig F.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla V. Giordano.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Communicated by Wolfgang Bilger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peralta, F.J.M., Roig, F.A., Medero, A.V. et al. Effect of water stress and UV-B on the production of outer stem waxes of Bulnesia retama seedlings from different eco-regions: alternatives for non-timber resources in drylands. Trees (2024). https://doi.org/10.1007/s00468-024-02516-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00468-024-02516-7

Keywords

Navigation