Skip to main content
Log in

Hydrotropism in lateral but not in pivotal roots of desert plant species under simulated natural conditions

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Root hydrotropism has been widely studied in seedling radicles through artificial experiments that reduce the influence of gravity and soil. In this work we aimed to study hydrotropism of primary lateral and pivotal roots in developed root systems of desert plants under simulated natural conditions.

Methods

We grew Bulnesia retama Griseb. (non phreatophyte), Prosopis flexuosa DC. (facultative phreatophyte) and Prosopis alpataco Phil.(obligate phreatophyte) seedlings in observation boxes with sand. Lateral and pivotal roots were stimulated by lateral water gradients and hydrotropic responses, root proliferation and root : shoot ratios were measured.

Results

We found that 65 ± 15 % of lateral roots that grew in response to water gradients in B. retama, 84 ± 8 % in P. flexuosa and 88 ± 8 % in P. alpataco displayed hydrotropism. Conversely, pivotal roots did not show hydrotropic growth. This was accompanied by root proliferation inside water patches, and biomass partitioning to shoot growth.

Conclusions

Our results provide evidence that root hydrotropism is a relevant response that could occur in nature. Lateral and pivotal roots manifest different hydrotropic responses under the conditions assayed. The combination of hydrotropism and precise root proliferation can shape root architecture, leading to optimum water patch exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

R : S ratio:

Root : shoot ratio

GSA:

Gravitropic set point angle

ψs :

Soil water potential

d.f:

Degrees of freedom

References

  • Blancaflor EB, Masson PH (2003) Plant gravitropism. Unraveling the ups and downs of a complex process. Plant Physiol 133:1677–1690

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bouguyon E, Gojon A, Nacry P (2012) Nitrate sensing and signaling in plants. Semin Cell Dev Biol 23:648–654

    Article  CAS  PubMed  Google Scholar 

  • Cassab GI, Eapen D, Campos ME (2013) Root hydrotropism: an update. Am J Bot 100:14–24

    Article  CAS  PubMed  Google Scholar 

  • Cole ES, Mahall BE (2006) A test for hydrotropic behavior by roots of two coastal dune shrubs. New Phytol 172:358–368

    Article  PubMed  Google Scholar 

  • Cowie AL, Penman TD, Gorissen L, Winslow MD, Lehmann J, Tyrrell TD, Twomlow S, Wilkes A, Lal R, Jones JW, Paulsch A, Kellner K, Akhtar-Schuster M (2011) Towards sustainable land management in the drylands: scientific connections in monitoring and assessing dryland degradation, climate change and biodiversity. Land Degrad Dev 22:248–260

    Article  Google Scholar 

  • Danjon F, Reubens B (2008) Assessing and analyzing 3D architecture of woody root systems, a review of methods and applications in tree and soil stability, resource acquisition and allocation. Plant Soil 303:1–34

    Article  CAS  Google Scholar 

  • Fortin MCA, Poff KL (1990) Temperature sensing by primary roots of maize. Plant Physiol 94:367–369

    Article  PubMed Central  Google Scholar 

  • Giordano CV, Guevara A, Boccalandro HE, Sartor C, Villagra PE (2011) Water status, drought responses, and growth of Prosopis flexuosa trees with different access to the water table in a warm South American desert. Plant Ecol 212:1123–1134

    Article  Google Scholar 

  • Guevara A, Giordano CV, Aranibar J, Quiroga M, Villagra PE (2010) Phenotypic plasticity of the coarse root system of Prosopis flexuosa, a phreatophyte tree, in the Monte Desert (Argentina). Plant Soil 330:447–464

    Article  CAS  Google Scholar 

  • Guyomarc’h S, Léran S, Auzon-Cape M, Perrine-Walker FML, Laplaze L (2012) Early development and gravitropic response of lateral roots in Arabidopsis thaliana. Phil Trans R Soc B 367:1509–1516

    Article  PubMed Central  PubMed  Google Scholar 

  • Hodge A (2003) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol 162:9–24

    Article  Google Scholar 

  • Hodge A (2010) Roots: the acquisition of water and nutrients from the heterogeneous soil environment. Prog Bot 71:307–337

    Article  Google Scholar 

  • Iwata S, Miyazawa Y, Takahashi H (2012) MIZU-KUSSEI1 plays an essential role in the hydrotropism of lateral roots in Arabidopsis thaliana. Environ Exp Bot 75:167–172

    Article  CAS  Google Scholar 

  • Iwata S, Miyazawa Y, Fujii N, Takahashi H (2013) MIZ1-regulated hydrotropism functions in the growth and survival of Arabidopsis thaliana under natural conditions. Ann Bot 112:103–114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jobbágy EG, Nosetto MD, Villagra PE, Jackson RB (2011) Water subsidies from mountains to deserts: their role in sustaining groundwater-fed oases in a sandy landscape. Ecol Appl 21:678–694

    Article  PubMed  Google Scholar 

  • Kiba T, Kudo T, Kojima M, Sakakibara H (2011) Hormonal control of nitrogen acquisition: roles of auxin, abscisic acid, and cytokinin. J Exp Bot 62:1399–1409

    Article  CAS  PubMed  Google Scholar 

  • Kiss JZ (2007) Where’s the water? Hydrotropism in plants. Proc Natl Acad Sci 104:4247–4248

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kobayashi A, Takahashi A, Kakimoto Y, Miyazawa Y, Fujii N, Higashitani A, Takahashi H (2007) A gene essential for hydrotropism in roots. Proc Natl Acad Sci 104:4724–4729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kutschera U, Briggs WR (2012) Root phototropism: from dogma to the mechanism of blue light perception. Planta 235:443–452

    Article  CAS  PubMed  Google Scholar 

  • Loomis WE, Ewan LM (1936) Hydrotropic responses of roots in soil. Bot Gaz 97:728–743

    Article  Google Scholar 

  • Mahibbur RM, Givbdarajulu Z (1997) A modification of the test of Shapiro and Wilk for normality. J Appl Stat 24:219–235

  • Malamy JE (2005) Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ 28:67–77

    Article  CAS  PubMed  Google Scholar 

  • Massa GD, Gilroy S (2003) Touch modulates gravity sensing to regulate the growth of primary roots of Arabidopsis thaliana. Plant J 33:435–445

    Article  PubMed  Google Scholar 

  • Morello J (1958) La Provincia Fitogeográfica del Monte. Opera Lilloana 2:1–155

  • Moriwaki T, Miyazawa Y, Fujii N, Takahashi H (2012) Light and abscisic acid signalling are integrated by MIZ1 gene expression and regulate hydrotropic response in roots of Arabidopsis thaliana. Plant Cell Environ 35:1359–1368

    Article  CAS  PubMed  Google Scholar 

  • Mullen JL, Hangarter RP (2003) Genetic analysis of the gravitropic set-point angle in lateral roots of Arabidopsis. Adv Space Res 31:2229–2236

    Article  CAS  PubMed  Google Scholar 

  • Nibau C, Gibbs DJ, Coates JC (2008) Branching out in new directions: the control of root architecture by lateral root formation. New Phytol 179:595–614

    Article  CAS  PubMed  Google Scholar 

  • Reynolds JF, Stafford Smith DM, Lambn EF, Turner BL II, Mortimore M, Batterbury SPJ, Dowing TE, Dowlatabadi H, Fernández RJ, Herrick JE, Huber-Sannwald E, Jiang H, Leemans R, Lynam T, Maestre FT, Ayarza M, Walker B (2007) Global desertification: building a science for dryland development. Science 316:847–851

    Article  CAS  PubMed  Google Scholar 

  • Sassi M, Lu Y, Zhang Y, Wang J, Dhonukshe P, Blilou I, Dai M, Li J, Gong X, Jaillais Y, Yu X, Traas J, Ruberti I, Wang H, Scheres B, Vernoux T, Xu J (2012) COP1 mediates the coordination of root and shoot growth by light through modulation of PIN1- and PIN2-dependent auxin transport in Arabidopsis. Development 139:3402–3412

    Article  CAS  PubMed  Google Scholar 

  • Scholander PF, Hammel HT, Hemingsen EA, Bradstreet ED (1965) Sap pressure in vascular plants. Science 148:339–346

    Article  CAS  PubMed  Google Scholar 

  • Stoll M, Loveys B, Dry P (2000) Hormonal changes induced by partial root zone drying of irrigated grapevine. J Exp Bot 51:1627–1634

    Article  CAS  PubMed  Google Scholar 

  • Strohm AK, Baldwin KL, Masson PH (2012) Molecular mechanisms of root gravity sensing and signal transduction. WIREs Dev Biol 1:276–285

    Article  CAS  Google Scholar 

  • Takahashi H, Miyazawa Y, Fujii N (2009) Hormonal interactions during root tropic growth: hydrotropism versus gravitropism. Plant Mol Biol 69:489–502

    Article  CAS  PubMed  Google Scholar 

  • Tsutsumi D, Kosugi K, Mizuyama T (2003) Effect of hydrotropism on root system development in soybean (Glycine max): growth experiments and a model simulation. J Plant Growth Regul 21:441–458

    Article  Google Scholar 

  • Wang L, de Kroon H, Bögemann GM, Smits AJM (2005) Partial root drying effects on biomass production in Brassica napus and the significance of root responses. Plant Soil 276:313–326

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Pablo E. Villagra, Alejandro Serrano, Ismael Gatica, Leandro E. Cortés and Leandro Ferrón for useful discussions about experimental design; Hugo Debandi, Gualberto Salazar, Marta Chimeno and Andrea Dallosta for their invaluable help in experimental setting; Hugo Videla for stainless steel tube construction; Nicolás Jerez and Facundo Agüero for biomass measurements; Nelly Horak for English language revision; anonymous reviewers whose commentaries and suggestions contributed to enhance the quality of this work. We thank Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT; PICT 2011–2521 and PICT 2007–1222) and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Valeria Giordano.

Additional information

Responsible Editor: Alain Pierret.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(GIF 25 kb)

High Resolution Image (EPS 712 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guevara, A., Giordano, C.V. Hydrotropism in lateral but not in pivotal roots of desert plant species under simulated natural conditions. Plant Soil 389, 257–272 (2015). https://doi.org/10.1007/s11104-014-2361-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2361-9

Keywords

Navigation