Skip to main content

Advertisement

Log in

Taxonomic and structural diversity indices predict soil carbon storage better than functional diversity indices along a dieback intensity gradient in semi-arid oak forests

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

The use of structural diversity indices can be efficient tools to increase understanding of changes in soil carbon storage as a key ecosystem function along the oak dieback intensity.

Abstract

Investigating the relationships between biodiversity and ecosystem functions within the mass‐ratio and niche complementary hypotheses is still a challenging issue in terrestrial ecology. These relationships have not been studied along a dieback gradient of disturbance in semi-arid forest ecosystems. To fill this gap, we investigated the relationships between a main ecosystem function -soil carbon storage- and various diversity indices along a dieback intensity gradient (no, low, moderate or high dieback intensity) in protected or intensively managed mixed oak forests in western Iran. We used different diversity approaches and calculated the functional divergence index (FDvar), community weighted mean trait values; CWM, taxonomic diversity indices (richness, Shannon–Wiener diversity and evenness) and structural diversity indices (MI: mingling index, HD: height differentiation, DD: diameter differentiation). Soil carbon storage was significantly influenced by the type of management, the intensity of dieback and their interactions and was higher in the protected areas (95.90 ± 4.62 ton ha−1) than in the intensively managed areas (76.52 ± 2.04 ton ha−1). It showed a humped-shaped pattern along the dieback intensity gradient in the protected areas, as it peaked at the low dieback intensity (122.47 ± 10.12 ton ha-1), indicating that soil function was maximized at a low disturbance level. Soil carbon storage was positively and significantly correlated with all structural and taxonomic diversity indices, except for evenness, but negatively with most functional composition indices (CWM of LNC: leaf nitrogen concentration, H: mean of woody species height and LDMC: leaf dry-matter content). It was best predicted by a structural index (Mingling index: R2 = 0.214) followed by a taxonomic index (species richness, R2 = 0.173) and a CWM index (CWM LDMC, R2 = 0.158). Our results emphasize the role played by the diversity indices to predict ecosystem functions in contrasted management conditions and along a dieback gradient. They also provide evidence to support both the mass‐ratio and niche complementary hypotheses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad A, Liu QJ, Nizami SM, Mannan A, Saeed S (2018) Carbon emission from deforestation, forest degradation and wood harvest in the temperate region of Hindukush Himalaya, Pakistan between 1994 and 2016. Land Use Policy 78:781–790

    Article  Google Scholar 

  • Aishan T, Betz F, Halik Ü, Cyffka B, Rouzi A (2018) Biomass carbon sequestration potential by riparian forest in the Tarim River Watershed, Northwest China: Implication for the mitigation of climate change impact. Forests 9:1–15

    Article  Google Scholar 

  • Ali A (2019) Forest stand structure and functioning: current knowledge and future challenges. Ecol Indic 98:665–677

    Article  Google Scholar 

  • Ali A, Yan ER, Chang SX, Cheng JY, Liu XY (2017) Community-weighted mean of leaf traits and divergence of wood traits predict aboveground biomass in secondary subtropical forests. Sci Total Environ 574:654–662

    Article  CAS  PubMed  Google Scholar 

  • Anderson J, Ingram JSI (1993) Tropical soil biology and fertility: a handbook of methods. CAB International, Wallingford, p 221

    Google Scholar 

  • Avila JM, Gallardo A, Ibáñez B, Gómez-Aparicio L (2016) Quercus suber dieback alters soil respiration and nutrient availability in Mediterranean forests. J Ecol 104(5):1441–1452

    Article  Google Scholar 

  • Aynekulu E, Denich M, Tsegaye D, Aerts R, Neuwirth B, Boehmer HJ (2011) Dieback affects forest structure in a dry Afromontane forest in northern Ethiopia. J Arid Environ 75(5):499–503

    Article  Google Scholar 

  • Bai YF, Shen YY, Jin YD, Hong Y, Liu YY, Li YQ, Liu R, Zhang ZW, Jiang CQ, Wang YJ (2020) Selective thinning and initial planting density management promote biomass and carbon storage in a chronosequence of evergreen conifer plantations in Southeast China. Glob Ecol Conserv 24:e01216

    Article  Google Scholar 

  • Berenstecher P, Vivanco L, Pérez LI, Ballaré CL, Austin AT (2020) Sunlight doubles aboveground carbon loss in a seasonally dry woodland in Patagonia. Curr Biol 30(16):3243–3251

    Article  CAS  PubMed  Google Scholar 

  • Blake GR, Hartge KH (1986) Bulk density. In: Klute A (Ed) Methods of soil analysis, part I, second ed., ASA Monograph No. 9. Madison, WI, pp 363–376

  • Bradstreet RB (1965) The Kjeldahl method for organic nitrogen. Academic Press, New York, p 239

    Google Scholar 

  • Brahma B, Pathak K, Lal R, Kurmi B, Das M, Nath PC, Nath AJ, Das AK (2018) Ecosystem carbon sequestration through restoration of degraded lands in Northeast India. Land Degrad Dev 29(1):15–25

    Article  Google Scholar 

  • Brouwers N, Matusick G, Ruthrof K, Lyons T, Hardy G (2013) Landscape-scale assessment of tree crown dieback following extreme drought and heat in a Mediterranean eucalypt forest ecosystem. Landsc Ecol 28(1):69–80

    Article  Google Scholar 

  • Brown K, Pearce D (1994) The economic value of non-market benefits of tropical forests: carbon storage. The economics of project appraisal and the environment, pp 102–123

  • Cakır M, Makineci E (2020) Litter decomposition in pure and mixed Quercus and Fagus stands as influenced by arthropods in Belgrad Forest, Turkey. J for Res 31(4):1123–1137

    Article  Google Scholar 

  • Chapin Iii FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC (2000) Consequences of changing biodiversity. Nature 405(6783):234

    Article  Google Scholar 

  • Chen X (2006) Tree diversity, carbon storage, and soil nutrient in an old-growth forest at Changbai Mountain, Northeast China. Commun Soil Sci Plant Anal 37(3–4):363–375

    Article  CAS  Google Scholar 

  • Cho SH, Soh M, English BC, Yu TE, Boyer CN (2019) Targeting payments for forest carbon sequestration given ecological and economic objectives. For Policy Econ 100:214–226

    Article  Google Scholar 

  • Cobb RC, Rizzo DM (2016) Litter chemistry, community shift, and non-additive effects drive litter decomposition changes following invasion by a generalist pathogen. Ecosystems 19(8):1478–1490

    Article  CAS  Google Scholar 

  • Cobb RC, Eviner VT, Rizzo DM (2013) Mortality and community changes drive sudden oak death impacts on litterfall and soil nitrogen cycling. New Phytol 200(2):422–431

    Article  CAS  PubMed  Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199(4335):1302–1310

    Article  CAS  PubMed  Google Scholar 

  • Conti G, Díaz S (2013) Plant functional diversity and carbon storage–an empirical test in semi-arid forest ecosystems. J Ecol 101(1):18–28

    Article  CAS  Google Scholar 

  • Cook BD, Bolstad PV, Martin JG, Heinsch FA, Davis KJ, Wang W, Desai AR, Teclaw RM (2008) Using light-use and production efficiency models to predict photosynthesis and net carbon exchange during forest canopy disturbance. Ecosystems 11(1):26–44

    Article  CAS  Google Scholar 

  • De Deyn GB, Cornelissen JH, Bardgett RD (2008) Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol Lett 11(5):516–531

    Article  PubMed  Google Scholar 

  • Diaz S, Cabido M (2001) Vive La difference: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16(11):646–655

    Article  Google Scholar 

  • Díaz S, Lavorel S, de Bello F, Quétier F, Grigulis K, Robson TM (2007) Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci 104(52):20684–20689

    Article  PubMed  PubMed Central  Google Scholar 

  • Dixon RK, Winjum JK, Andrasko KJ, Lee JJ, Schroeder PE (1994) Integrated land-use systems: assessment of promising agroforest and alternative land-use practices to enhance carbon conservation and sequestration. Clim Change 27(1):71–92

    Article  CAS  Google Scholar 

  • Fathizadeh O, Hosseini SM, Zimmermann A, Keim RF, Boloorani AD (2017) Estimating linkages between forest structural variables and rainfall interception parameters in semi-arid deciduous oak forest stands. Sci Total Environ 601:1824–1837

    Article  PubMed  Google Scholar 

  • Finegan B, Peña-Claros M, de Oliveira A, Ascarrunz N, Bret-Harte MS, Carreño-Rocabado G, Casanoves F, Díaz S, Eguiguren Velepucha P, Fernandez F, Licona JC (2015) Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. J Ecol 103(1):191–201

    Article  Google Scholar 

  • Fotis AT, Murphy SJ, Ricart RD, Krishnadas M, Whitacre J, Wenzel JW, Queenborough SA, Comita LS (2018) Above-ground biomass is driven by mass-ratio effects and stand structural attributes in a temperate deciduous forest. J Ecol 106(2):561–570

    Article  CAS  Google Scholar 

  • Freschet GT, Aerts R, Cornelissen JH (2012) A plant economics spectrum of litter decomposability. Funct Ecol 26(1):56–65

    Article  Google Scholar 

  • Garnier E, Cortez J, Billès G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecol 85(9):2630–2637

    Article  Google Scholar 

  • Ghosh BN, Mishra PK (2020) Effects of productivity and soil carbon storage in mixed forests. Carbon management in tropical and sub-tropical terrestrial systems. Springer, Singapore, pp 349–361

    Chapter  Google Scholar 

  • Goodarzi M, Pourhashemi M, Azizi Z (2019) Investigation on Zagros forests cover changes under the recent droughts using satellite imagery. J for Sci 65(1):9–17

    Article  Google Scholar 

  • Gordon CE, Bendall ER, Stares MG, Collins L, Bradstock RA (2018) Aboveground carbon sequestration in dry temperate forests varies with climate not fire regime. Glob Change Biol 24(9):4280–4292

    Article  Google Scholar 

  • Haber LT, Fahey RT, Wales SB, Correa Pascuas N, Currie WS, Hardiman BS, Gough CM (2020) Forest structure, diversity, and primary production in relation to disturbance severity. Ecol Evol 10(10):4419–4430

    Article  PubMed  PubMed Central  Google Scholar 

  • Häger A, Avalos G (2017) Do functional diversity and trait dominance determine carbon storage in an altered tropical landscape? Oecologia 184(2):569–581

    Article  PubMed  Google Scholar 

  • Haller DJ, Wimberly MC (2020) Estimating the potential for forest degradation in the eastern United States woodlands from an introduction of sudden oak death. Forests 11(12):1–16

    Article  Google Scholar 

  • Hammad HM, Nauman HM, Abbas F, Ahmad A, Bakhat HF, Saeed S, Shah GM, Ahmad A, Cerdà A (2020) Carbon sequestration potential and soil characteristics of various land use systems in arid region. J Environ Manag 264:110254

    Article  CAS  Google Scholar 

  • Han G, Hao X, Zhao M, Wang M, Ellert BH, Willms W, Wang M (2008) Effect of grazing intensity on carbon and nitrogen in soil and vegetation in a meadow steppe in Inner Mongolia. Agric Ecosyst Environ 125(1–4):21–32

    Article  CAS  Google Scholar 

  • Henry M, Besnard A, Asante WA, Eshun J, Adu-Bredu S, Valentini R, Bernoux M, Saint-André L (2010) Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa. For Ecol Manag 260:1375–1388

    Article  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67(3):283–335

    Article  Google Scholar 

  • Hevia A, Sánchez-Salguero R, Camarero JJ, Querejeta JI, Sangüesa-Barreda G, Gazol A (2019) Long-term nutrient imbalances linked to drought-triggered forest dieback. Sci Total Environ 690:1254–1267

    Article  CAS  PubMed  Google Scholar 

  • Heydari M, Prévosto B, Abdi T, Mirzaei J, Mirab-Balou M, Rostami N, Khosravi M, Pothier D (2017) Establishment of oak seedlings in historically disturbed sites: regeneration success as a function of stand structure and soil characteristics. Ecol Eng 107:172–182

    Article  Google Scholar 

  • Heydari M, Zeynali N, Omidipour R, Bazgir M, Kohzadian M, Prevosto B (2020a) Linkage between plant species diversity and soil-based functions along a post-agricultural succession is influenced by the vegetative forms. Environ Monit Assess 192(7):1–16

    Article  Google Scholar 

  • Heydari M, Eslaminejad P, Kakhki FV, Mirab-Balou M, Omidipour R, Prévosto B, Kooch Y, Lucas-Borja ME (2020b) Soil quality and mesofauna diversity relationship are modulated by woody species and seasonality in semiarid oak forest. For Ecol Manag 473:118332

    Article  Google Scholar 

  • Ibáñez B, Gómez-Aparicio L, Ávila JM, Pérez-Ramos IM, Marañón T (2017) Effects of Quercus suber decline on woody plant regeneration: potential implications for successional dynamics in Mediterranean forests. Ecosystems 20(3):630–644

    Article  Google Scholar 

  • Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137(3–4):253–268

    Article  CAS  Google Scholar 

  • Jhariya MK (2017) Vegetation ecology and carbon sequestration potential of shrubs in tropics of Chhattisgarh, India. Environ Monit Assess 189(10):518

    Article  PubMed  Google Scholar 

  • Joly FX, Milcu A, Scherer-Lorenzen M, Jean LK, Bussotti F, Dawud SM, Müller S, Pollastrini M, Raulund-Rasmussen K, Vesterdal L, Hättenschwiler S (2017) Tree species diversity affects decomposition through modified micro-environmental conditions across European forests. New Phytol 214(3):1281–1293

    Article  CAS  PubMed  Google Scholar 

  • Kamata N (2002) Outbreaks of forest defoliating insects in Japan, 1950–2000. Bull Entom Res 92(2):109

    Article  CAS  Google Scholar 

  • Karami O, Fallah A, Shataei SH, Latifi H (2018) Assessment of geostatistical and interpolation methods for mapping forest dieback intensity in Zagros forests. Casp J Environ Sci 16(1):71–84

    Google Scholar 

  • Kardol P, Campany CE, Souza L, Norby RJ, Weltzin JF, Classen AT (2010) Climate change effects on plant biomass alter dominance patterns and community evenness in an experimental old-field ecosystem. Glob Change Biol 16(10):2676–2687

    Article  Google Scholar 

  • Karmakar R, Das I, Dutta D, Rakshit A (2016) Potential effects of climate change on soil properties: a review. Sci Int 4(2):51–73

    Article  CAS  Google Scholar 

  • Keren S, Svoboda M, Janda P, Nagel TA (2020) Relationships between structural indices and conventional stand attributes in an old-growth Forest in Southeast Europe. Forests 11(1):4

    Article  Google Scholar 

  • Klemm T, Briske DD, Reeves MC (2020) Potential natural vegetation and NPP responses to future climates in the US Great Plains. Ecosphere 11(10):e03264

    Article  Google Scholar 

  • Koepke DF, Kolb TE, Adams HD (2010) Variation in woody plant mortality and dieback from severe drought among soils, plant groups, and species within a northern Arizona ecotone. Oecologia 163(4):1079–1090

    Article  PubMed  Google Scholar 

  • König P, Tautenhahn S, Cornelissen JH, Kattge J, Bönisch G, Römermann C (2018) Advances in flowering phenology across the Northern Hemisphere are explained by functional traits. Glob Ecol Biogeogr 27(3):310–321

    Article  Google Scholar 

  • Kuebbing SE, Maynard DS, Bradford MA (2018) Linking functional diversity and ecosystem processes: a framework for using functional diversity metrics to predict the ecosystem impact of functionally unique species. J Ecol 106(2):687–698

    Article  Google Scholar 

  • Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22

    Article  CAS  Google Scholar 

  • Lal R (2005) Forest soils and carbon sequestration. For Ecol Manag 220(1–3):242–258

    Article  Google Scholar 

  • Li Z, Liu C, Dong Y, Chang X, Nie X, Liu L, Xiao H, Lu Y, Zeng G (2017) Response of soil organic carbon and nitrogen stocks to soil erosion and land use types in the Loess hilly–gully region of China. Soil Tillage Res 166:1–9

    Article  Google Scholar 

  • Lin D, Anderson-Teixeira KJ, Lai J, Mi X, Ren H, Ma K (2016) Traits of dominant tree species predict local scale variation in forest aboveground and topsoil carbon stocks. Plant Soil 409(1):435–446

    Article  CAS  Google Scholar 

  • Lin JC, Chiu CM, Lin YJ, Liu WY (2018) Thinning effects on biomass and carbon stock for young Taiwania plantations. Sci Rep 8(1):1–7

    Google Scholar 

  • Maestre FT, Reynolds JF (2006) Spatial heterogeneity in soil nutrient supply modulates nutrient and biomass responses to multiple global change drivers in model grassland communities. Glob Change Biol 12(12):2431–2441

    Article  Google Scholar 

  • Marques A, Martins IS, Kastner T, Plutzar C, Theurl MC, Eisenmenger N, Huijbregts MA, Wood R, Stadler K, Bruckner M, Canelas J (2019) Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nat Ecol Evol 3(4):628–637

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin PA, Newton AC, Cantarello E, Evans P (2015) Stand dieback and collapse in a temperate forest and its impact on forest structure and biodiversity. For Ecol Manag 358:130–138

    Article  Google Scholar 

  • Mason NW, Mouillot D, Lee WG, Wilson JB (2005) Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111(1):112–118

    Article  Google Scholar 

  • Mulder CP, Bazeley-White E, Dimitrakopoulos PG, Hector A, Scherer-Lorenzen M, Schmid B (2004) Species evenness and productivity in experimental plant communities. Oikos 107(1):50–63

    Article  Google Scholar 

  • Nagel TA, Iacopetti G, Javornik J, Rozman A, De Frenne P, Selvi F, Verheyen K (2019) Cascading effects of canopy mortality drive long-term changes in understorey diversity in temperate old-growth forests of Europe. J Veg Sci 30(5):905–916

    Article  Google Scholar 

  • Nelson DW, Sommers L (1982) Total carbon, organic carbon and organic matter. In: Page AL (ed) Methods of soil analysis, part 2. American Society of Agronomy and Soil Science Society of America, Madison, pp 539–577

    Google Scholar 

  • Ogaya R, Liu D, Barbeta A, Peñuelas J (2020) Stem mortality and forest dieback in a 20-years experimental drought in a Mediterranean Holm Oak forest. Front for Glob Change 2:89–98

    Article  Google Scholar 

  • Omidipour R, Tahmasebi P, Faizabadi MF, Faramarzi M, Ebrahimi A (2021) Does β diversity predict ecosystem productivity better than species diversity? Ecol Indic 122:107212

    Article  Google Scholar 

  • Pandey A, Arunachalam K, Thadani R, Singh V (2020) Forest degradation impacts on carbon stocks, tree density and regeneration status in banj oak forests of Central Himalaya. Ecol Res 35(1):208–218

    Article  CAS  Google Scholar 

  • Perez-Harguindeguy N, Diaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61(3):167–234

    Article  Google Scholar 

  • Pilli R (2012) Calibrating CORINE Land Cover 2000 on forest inventories and climatic data: an example for Italy. Int J Appl Earth Obs Geoinform 19:59–71

    Google Scholar 

  • Pommerening A (2002) Approaches to quantifying forest structures. Forestry: An International Journal of Forest Research 75(3):305–324

  • Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Change Biol 6(3):317–327

    Article  Google Scholar 

  • Poorter H, Garnier E (2007) Ecological significance of inherent variation in relative growth rate and its components. In Functional plant ecology CRC press. pp 67–100

  • Qin Y, Feng Q, Holden N.M, Cao J (2016) Variation in soil organic carbon by slope aspect in the middle of the Qilian Mountains in the upper Heihe River Basin, China. Catena, 147:308–314

  • Qiu Z, Feng Z, Song Y, Li M, Zhang P (2020) Carbon sequestration potential of forest vegetation in China from 2003 to 2050: predicting forest vegetation growth based on climate and the environment. J Clean Prod 252:119715

    Article  Google Scholar 

  • Rawat M, Arunachalam K, Arunachalam A, Alatalo J, Pandey R (2019) Associations of plant functional diversity with carbon accumulation in a temperate forest ecosystem in the Indian Himalayas. Ecol Indic 98:861–868

    Article  Google Scholar 

  • Renne RR, Schlaepfer DR, Palmquist KA, Bradford JB, Burke IC, Lauenroth WK (2019) Soil and stand structure explain shrub mortality patterns following global change–type drought and extreme precipitation. Ecology 100(12):e02889

    Article  PubMed  Google Scholar 

  • Richards KR, Stokes CA (2004) A review of forest carbon sequestration cost studies: a dozen years of research. Clim Change 63(1–2):1–48

    Article  Google Scholar 

  • Ruiz-Peinado R, Oviedo JA, Senespleda EL, Oviedo FB, del Río GM (2017) Forest management and carbon sequestration in the Mediterranean region: a review. For Syst 26(2):10

    Google Scholar 

  • Ryan MG, Binkley D, Fownes JH (1997) Age-related decline in forest productivity: pattern and process. Adv Ecol Res 27:213–262

    Article  Google Scholar 

  • Sánchez-Salguero R, Camarero JJ (2020) Greater sensitivity to hotter droughts underlies juniper dieback and mortality in Mediterranean shrublands. Sci Total Environ 721:137599

    Article  PubMed  Google Scholar 

  • Sanji R, Kooch Y, Rey A (2020) Impact of forest degradation and reforestation with Alnus and Quercus species on soil quality and function in northern Iran. Ecol Indic 112:106132

    Article  CAS  Google Scholar 

  • Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, Braswell BH, Apps MJ, Baker D, Bondeau A, Canadell J (2001) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414(6860):169–172

    Article  CAS  PubMed  Google Scholar 

  • Shiravand H, Hosseini SA (2020) A new evaluation of the influence of climate change on Zagros oak forest dieback in Iran. Theor Appl Climatol 141:685–697

    Article  Google Scholar 

  • Siebenkäs A, Roscher C (2016) Functional composition rather than species richness determines root characteristics of experimental grasslands grown at different light and nutrient availability. Plant Soil 404(1–2):399–412

    Article  Google Scholar 

  • Singh G, Bala N, Chaudhuri KK, Meena RL (2003) Carbon sequestration potential of common access resources in arid and semi-arid regions of northwestern India. Indian for 129(7):859–864

    Google Scholar 

  • Sintayehu DW, Belayneh A, Dechassa N (2020) Aboveground carbon stock is related to land cover and woody species diversity in tropical ecosystems of Eastern Ethiopia. Ecol Process 9(1):1–10

    Article  Google Scholar 

  • Spielvogel S, Prietzel J, Auerswald K, Kögel-Knabner I (2009) Site-specific spatial patterns of soil organic carbon stocks in different landscape units of a high-elevation forest including a site with forest dieback. Geoderma 152(3–4):218–230

    Article  CAS  Google Scholar 

  • Steinbeiss S, Bessler HO, Engels C, Temperton VM, Buchmann N, Roscher C, Kreutziger Y, Baade J, Habekost M, Gleixner G (2008) Plant diversity positively affects short-term soil carbon storage in experimental grasslands. Glob Change Biol 14(12):2937–2949

    Article  Google Scholar 

  • Tahmasebi P, Moradi M, Omidipour R (2017) Plant functional identity as the predictor of carbon storage in semi-arid ecosystems. Plant Ecol Divers 10(2–3):139–151

    Article  Google Scholar 

  • Takahashi M, Feng Z, Mikhailova TA, Kalugina OV, Shergina OV, Afanasieva LV, Heng RK, Abd-Majid NM, Sase H (2020) Air pollution monitoring and tree and forest decline in East Asia: a review. Sci Total Environ 742:140288

    Article  CAS  PubMed  Google Scholar 

  • Tedeschi V, Rey AN, Manca G, Valentini R, Jarvis PG, Borghetti M (2006) Soil respiration in a Mediterranean oak forest at different developmental stages after coppicing. Glob Change Biol 12(1):110–121

    Article  Google Scholar 

  • Tenzin J, Hasenauer H (2016) Tree species composition and diversity in relation to anthropogenic disturbances in broad-leaved forests of Bhutan. Int J Biodivers Sci Ecosyst Serv Manag 12(4):274–290

    Google Scholar 

  • Thomas SC, Malczewski G, Saprunoff M (2007) Assessing the potential of native tree species for carbon sequestration forestry in Northeast China. J Environ Manage 85(3):663–671

    Article  CAS  PubMed  Google Scholar 

  • Tilman D (2001) Functional diversity. Encycl Biodiver 3(1):109–120

    Article  Google Scholar 

  • Tong X, Brandt M, Yue Y, Ciais P, Jepsen MR, Penuelas J, Wigneron JP, Xiao X, Song XP, Horion S, Rasmussen K (2020) Forest management in southern China generates short term extensive carbon sequestration. Nat Commun 11(1):1–10

    Article  Google Scholar 

  • Touhami I, Chirino E, Aouinti H, El Khorchani A, Elaieb MT, Khaldi A, Nasr Z (2019) Decline and dieback of cork oak (Quercus suber L.) forests in the Mediterranean basin: a case study of Kroumirie Northwest Tunisia. J for Res 31:1461–1477

    Article  Google Scholar 

  • Upadhyay TP, Sankhayan PL, Solberg B (2005) A review of carbon sequestration dynamics in the Himalayan region as a function of land-use change and forest/soil degradation with special reference to Nepal. Agric Ecosyst Environ 105(3):449–465

    Article  CAS  Google Scholar 

  • Van Con T, Thang NT, Khiem CC, Quy TH, Lam VT, Van Do T, Sato T (2013) Relationship between aboveground biomass and measures of structure and species diversity in tropical forests of Vietnam. For Ecol Manag 310:213–218

    Article  Google Scholar 

  • Van Der Heijden MG, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396(6706):69–72

    Article  Google Scholar 

  • van Rooijen NM, De Keersmaecker W, Ozinga WA, Coppin P, Hennekens SM, Schaminée JH, Somers B, Honnay O (2015) Plant species diversity mediates ecosystem stability of natural dune grasslands in response to drought. Ecosystems 18(8):1383–1394

    Article  Google Scholar 

  • Vance-Chalcraft HD, Willig MR, Cox SB, Lugo AE, Scatena FN (2010) Relationship between aboveground biomass and multiple measures of biodiversity in subtropical forest of Puerto Rico. Biotropica 42(3):290–299

    Article  Google Scholar 

  • Vesterdal L, Clarke N, Sigurdsson BD, Gundersen P (2013) Do tree species influence soil carbon stocks in temperate and boreal forests? For Ecol Manag 309:4–18

    Article  Google Scholar 

  • Wang G, Liu Y, Wu X, Pang D, Yang X, Hussain A, Zhou J (2020) Stand structural diversity and species with leaf nitrogen conservation drive aboveground carbon storage in tropical old-growth forests. Forests 11(9):994

    Article  Google Scholar 

  • Watson RT, Noble IR, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ (2000) Land use, land-use change and forestry: a special report of the intergovernmental panel on climate change. Cambridge University Press

    Google Scholar 

  • Weiher E, Keddy PA (1999) Relative abundance and evenness patterns along diversity and biomass gradients. Oikos 87(2):355–361

    Article  Google Scholar 

  • Wen Z, Zheng H, Smith JR, Ouyang Z (2021) Plant functional diversity mediates indirect effects of land-use intensity on soil water conservation in the dry season of tropical areas. For Ecol Manag 480:118646

    Article  Google Scholar 

  • Wilsey BJ, Potvin C (2000) Biodiversity and ecosystem functioning: importance of species evenness in an old field. Ecology 81(4):887–892

    Article  Google Scholar 

  • Xiong Y, D’Atri JJ, Fu S, Xia H, Seastedt TR (2011) Soil Biol Biochem 43(12):2450–2456

    Article  CAS  Google Scholar 

  • Zhang X, Guan D, Li W, Sun D, Jin C, Yuan F, Wang A, Wu J (2018) The effects of forest thinning on soil carbon stocks and dynamics: a meta-analysis. For Ecol Manag 429:36–43

    Article  Google Scholar 

  • Zhang X, Zhang X, Han H, Shi Z, Yang X (2019) Biomass accumulation and carbon sequestration in an age-sequence of Mongolian pine plantations in Horqin sandy land China. Forests 10(2):1–18

    Article  Google Scholar 

  • Zhu B, Wang X, Fang J, Piao S, Shen H, Zhao S, Peng C (2010) Altitudinal changes in carbon storage of temperate forestson Mt Changbai Northeast China. J Plant Res 123:439–452

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research has been carried out using the proposal approved by the Vice chancellor for Research & Technology of Islamic Azad University, Chalus Branch and research core of Ilam University managed by Dr. Mehdi Heydari.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Heydari.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Communicated by Zhu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Fig. 

Fig. 5
figure 5

Principal Component Analysis (PCA) ordination diagrams showing distribution of the plots along the first two axes when using only one diversity approach; functional divergence (a), functional composition (b), taxonomic diversity indices (c) and structural indices (d). CWM community weighted mean, Fdvar functional divergence, LPC leaf phosphorus concentration, LNC leaf nitrogen concentration, H mean of woody species height, LDMC leaf dry-matter content, SLA specific leaf area, WD wood density, MI mingling index, HDif height differentiation, Ddif diameter differentiation, S Richness, H′ Shannon–Wiener index, E evenness. Plots are identified by two letters, the first letter refers to the dieback intensity class (L, M, H, C) i.e. low, medium, high or control (no dieback), while the second letter refers (D and P) to the degraded or protected area. Blank and solid symbols indicate degraded and protected areas, respectively

5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karami, M., Sheykholeslami, A., Heydari, M. et al. Taxonomic and structural diversity indices predict soil carbon storage better than functional diversity indices along a dieback intensity gradient in semi-arid oak forests. Trees 36, 537–551 (2022). https://doi.org/10.1007/s00468-021-02227-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-021-02227-3

Keywords

Navigation