Skip to main content
Log in

Genomic and biotechnological interventions in Prosopis cineraria: current status, challenges and opportunities

  • Review
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

The present review illustrates an inclusive overview on the progress made in the area of genomics, population genetics, phylogenetics, non-GM biotechnology and genomic resource development in Prosopis cineraria and also suggests how genomic and biotechnological research will accelerate gene discovery, molecular breeding and crop improvement program in P. cineraria.

Abstract

In the era of global climate change, plant resources able to tolerate adverse stressful environments particularly drought, heat, cold and salt stresses have immense importance. The adaptation of plants towards different abiotic stresses depend on the coordination and regulation of multiple stress-responsive genes. The tree species vital to arid environments possess a gene pool representing useful characteristics related to abiotic stresses. Utilization and characterization of genetic resources of plants of arid regions can lead to an increase in our knowledge of the genes that are linked to abiotic stress related traits. Prosopis cineraria is an important tree of Indian Thar desert and is able to survive in adverse environmental conditions. Genomics and identification of genomic resources of this important tree species may be useful in determination of its adaptive evolution under adverse environmental conditions. Little progress has been made for this tree species in the area of population genetics, genomic and genetic resources development in the form of transcriptome sequencing, generation of ESTs against the heat and drought stresses, and identification of genomic SSRs. The feasibility of micropropagation as a non-GM biotechnology has also been demonstrated in P. cineraria. In this review, we also compared the genomic resource development in P. cineraria with other Prosopis species and some other model forest tree species like Populus, Eucalyptus, Quercus, Pinus, Picea, Castanea. However, genomic resource developed in P. cineraria is almost negligible comparatively to other model plants and still considered as less studied species. Although, many stress-responsive genes have been identified in a number of model plants, the native plant species grown naturally under harsh environment are rich source of novel abiotic stress-tolerant genes. More efforts are therefore needed to characterise this tree species using most modern genomic, genetic and biotechnological tools. More genomic research would accelerate gene discovery and molecular breeding in P. cineraria and increase its acceptability as classical tree species at global level for abiotic stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Afifi HAS, Al-rub IB (2018) Prosopis cineraria as an unconventional legumes, nutrition and health benefits. In: Clemente A (ed) Jimenez-Lopez JC. Legume seed nutraceutical research, IntechOpen, pp 69–86

    Google Scholar 

  • Anand SS, Thakur S, Gargi M, Choudhary S, Bhardwaj P (2017) Development and characterization of genomic microsatellite markers in Prosopis cineraria. Current Plant Biol 9–10:37–42

    Article  Google Scholar 

  • Arya HC, Shekhawat NS (1986) Clonal multiplication of tree species in the Thar desert through tissue culture. Forest Ecol Manag 16:201–208

    Article  CAS  Google Scholar 

  • Asaf S, Khan AL, Khan A, Al-Harrasi A (2020) Unravelling the chloroplast genomes of two Prosopis species to identify its genomic information, comparative analyses and phylogenetic relationship. Int J Mol Sci 21:3280

    Article  CAS  PubMed Central  Google Scholar 

  • Asthana P, Jaiswal VS, Jaiswal U (2011) Micropropagation of Sapindus trifoliatus L. and assessment of genetic fidelity of micropropagated plants using RAPD analysis. Acta Physiol Plant 33:1821–1829

    Article  CAS  Google Scholar 

  • Bansal KC, Lenka SK, Mondal TK (2014) Genomic resources for breeding crops with enhanced abiotic stress tolerance. Plant Breed 133:1–11

    Article  CAS  Google Scholar 

  • Batchelor CA, Yao D, Koehler MJ, Harris PJC (1989) In vitro propagation of Prosopis species (P. chilensis, P. cineraria and P. juliflora). Annates des Sciences Foresticrcs 46:110–112

    Article  Google Scholar 

  • Bessega C, Vilardi JC, Saidman BO (2006) Genetic relationships among American species of the genus Prosopis (Mimosoideae, Leguminosae) inferred from ITS sequences: evidence for long-distance dispersal. J Biogeogr 33:1905–1915

    Article  Google Scholar 

  • Bessega CF, Pometti CL, Miller JT, Watts R, Saidman BO, Vilardi JC (2013) New microsatellite loci for Prosopis alba and P. chilensis (Fabaceae). Appl Plant Sci 1:1200324

    Article  Google Scholar 

  • Bhansali RR (2010) Biology and multiplication of Prosopis species grown in the Thar Desert. In: Ramawat KG (ed) Desert plants biology and biotechnology. Springer, Berlin, pp 371–406

    Chapter  Google Scholar 

  • Birol I, Raymond A, Jackman SD, Pleasance S, Coope R, Taylor GA et al (2013) Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics 29:1492–1497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Catalano SA, Vilardi JC, Tosto D, Saidman BO (2008) Molecular phylogeny and diversification history of Prosopis (Fabaceae: Mimosoideae). Biol J Linnean Soc 93:621–640

    Article  Google Scholar 

  • Chalupa V (1981) Clonal propagation of broad leaved forest trees in vitro. Commun Inst Forest Czechosl 12:255–271

    Google Scholar 

  • Chase MW, Cowan RS, Hollingsworth PM, van ben Berg C, Madrinan S, Petersen G, Seberg O, Jorgensen T, Cameron KM, Carine M, Pedersen N, Hedderson TAJ, Conrad F, Salazar GA, Richardson JE, Hollingsworth ML, Barraclough TG, Kelly L, Wilkinson M (2007) A proposal for a standardised protocol to barcode all land plants. Taxon 56:295–299

    Article  Google Scholar 

  • Chaudhary KK, Kumar G, Varshney A, Meghvansi MK, Ali SF, Karthik K, Dhama K, Siddiqui S, Kaul RK (2018) Ethnopharmacological and phytopharmaceutical evaluation of Prosopis cineraria: An overview and future prospects. Curr Drug Metabol 19:192–214

    Article  CAS  Google Scholar 

  • Diep PH, Vishwakarma H, Solanke AK, Padaria JC (2017) Identification of drought stress responsive genes from Prosopis cineraria (L.) Druce for climate resilient agriculture. Biotech Today 1:25–32

    Article  Google Scholar 

  • Doyle JJ, Luckow MA (2003) The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. Plant Physiol 131:900–910

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Elmeer RK, Almalki A (2011) DNA finger printing of Prosopis cineraria and Prosopis juliflora using ISSR and RAPD techniques. Am J Plant Sci 2:527–534

    Article  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Gangal S, Sharma S, Rauf A (2009) Fatty acid composition of Prosopis cineraria seeds. Chem Nat Compd 45:705–707

    Article  CAS  Google Scholar 

  • Garg A, Mittal SK (2013) Review on Prosopis cineraria: a potential herb of Thar desert. Drug Invent Today 5:60–65

    Article  CAS  Google Scholar 

  • Garg R, Patel RK, Tyagi AK, Jain M (2011) De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification. DNA Res 18:53–63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gonzalez-Montemayor AM, Flores-Gallegos AC, Contreras-Esquivel JC, Solanilla-Duque JF, Rodríguez-Herrera R (2019) Prosopis spp. functional activities and its applications in bakery products. Trend Food Sci Technol 94:12–19

    Article  CAS  Google Scholar 

  • Goswami M, Ranade SA (1999) Analysis of variations in RAPD profiles among accessions of Prosopis. J Genet 78:141–147

    Article  CAS  Google Scholar 

  • Goyal Y, Arya HC (1981) Differentiation in cultures of Prosopis cineraria through tissue culture. Curr Sci 50:468–469

    Google Scholar 

  • Goyal Y, Arya HC (1984) Tissue culture of desert trees: I. Clonal multiplication of Prosopis cineraria by bud culture. J Plant Physiol 115:183–189

    Article  CAS  PubMed  Google Scholar 

  • Harfouche A, Meilan R, Altman A (2014) Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement. Tree Physiol 34(11):1181–1198

    Article  CAS  PubMed  Google Scholar 

  • Harish, Gupta AK, Phulwaria M, Rai MK, Shekhawat NS (2014) Conservation genetics of endangered medicinal plant Commiphora wightii in Indian Thar Desert. Gene 535:266–272

    Article  CAS  PubMed  Google Scholar 

  • Harris PJ (1992) Vegetative propagation of Prosopis. In: Dutton RW (ed) Prosopis species: aspects of their value, research and development. Proceedings of the Symposium University of Durham, UK, pp 175–191

  • Hebert PDN, Gregory TR (2005) The promise of DNA barcoding for taxonomy. Syst Biol 54:852–859

    Article  PubMed  Google Scholar 

  • Jansson S, Douglas CJ (2007) Populus: a model system for plant biology. Annu Rev Plant Biol 58:435–458

    Article  CAS  PubMed  Google Scholar 

  • Kackar NL, Solanki KR, Singh M, Vyas SC (1991) Micropropagation of Prosopis cineraria. Indian J Exp Biol 29:65–67

    Google Scholar 

  • Kalia RK, Rai MK, Kalia S, Singh R, Dhawan AK (2011) Microsatellites markers: an overview of the recent progress in plants. Euphytica 177:309–334

    Article  CAS  Google Scholar 

  • Kalia RK, Krishnan PR, Tewari JC (2014a) Limitations, progress and prospects of application of biotechnological approaches in improvement of Prosopis: an important genus of the arid regions. Annal Arid Zone 53:33–41

    Google Scholar 

  • Kalia RK, Rai MK, Sharma R, Bhatt RK (2014b) Understanding Tecomella undulata: an endangered pharmaceutically important timber species of hot arid regions. Genet Res Crop Evol 61:1397–1421

    Article  Google Scholar 

  • Kaur A, Vishwakarma H, Maibam A, Padaria JC (2018) Cloning, characterization and in silico studies on abiotic stress responsive Hsp17.9 from Prosopis cineraria. Indian J Plant Physiol 23:731–740

    Article  CAS  Google Scholar 

  • Krishnamurthy PK, Francis RA (2012) A critical review on the utility of DNA barcoding in biodiversity conservation. Biodivers Conserv 21:1901–1919

    Article  Google Scholar 

  • Krishnan PR, Jindal SK (2015) Khejri, the king of Indian Thar desert is under phenophase change. Curr Sci 108:1987–1990

    Google Scholar 

  • Kshirsagar P, Umdale S, Chavan J, Gaikwad N (2017) Molecular authentication of medicinal plant, Swertia chirayita and its adulterant species. Proc Natl Acad Sci India Sect B: Biol Sci 87:101–107

    Article  Google Scholar 

  • Kumar S, Singh N (2009) Micropropagation of Prosopis cineraria (L.) Druce-A multipurpose desert tree. Researcher 1:28–32

    CAS  Google Scholar 

  • Liu M, Qiao G, Jiang J, Yang H, Xie L, Xie J, Zhuo R (2012) Transcriptome sequencing and de novo analysis for ma bamboo (Dendrocalamus latiflorus Munro) using the Illumina platform. PLoS ONE 7:e46766

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lloyd GB, McCown BH (1980) Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Comb Proc Plant Prop Soc 30:421–427

    Google Scholar 

  • Lopes RJ, Mérida AM, Carneiro M (2017) Unleashing the potential of public genomic resources to find parasite genetic data. Trends Parasitol 33(10):750–753

    Article  PubMed  Google Scholar 

  • Ma Y, Qin F, Tran LP (2012) Contribution of genomics to gene discovery in plant abiotic stress responses. Molecular Plant 5:1176–1178

    Article  CAS  PubMed  Google Scholar 

  • Malik S, Mann S, Gupta D, Gupta RK (2013) Nutraceutical properties of Prosopis cineraria (L.) Druce pods: a component of “panchkutha.” J Pharmacogn Phytochem 2:66–73

    CAS  Google Scholar 

  • Mottura MC, Finkeldey R, Verga AR, Gailing O (2005) Development and characterisation of microsatellite markers for Prosopis chilensis and Prosopis flexuosa and cross-amplification. Mol Ecol Note 5:487–489

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD et al (2014) The genome of Eucalyptus grandis. Nature 510:356–362

    Article  CAS  PubMed  Google Scholar 

  • Nandwani D, Ramawat KG (1993) In vitro plantlets formation through juvenile and mature explants in Prosopis cineraria. Indian J Exp Biol 31:156–160

    CAS  Google Scholar 

  • Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev Genet 12:111–122

    Article  CAS  PubMed  Google Scholar 

  • Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin Y, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A et al (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579–584

    Article  CAS  PubMed  Google Scholar 

  • Padaria JC, Thuy NT, Tarafdar A, Yadav R (2015) Development of a heat-responsive cDNA library from Prosopis cineraria and molecular characterisation of the Pchsp17.9 gene. J Horti Sci Biotechnol 90:318–324

    Article  CAS  Google Scholar 

  • Pandey MK, Nigam SN, Upadhyaya HD, Janila P, Varshney RK, Monyo E, Ozias-Akins P, Liang X, Guimarães P, Zhang X, Guo B, Cook DR, Michelmore R, Bertioli DJ (2012) Advances in Arachis genomics for peanut improvement. Biotechnol Adv 30:639–651

    Article  CAS  PubMed  Google Scholar 

  • Pasiecznik NM, Felker P, Harris PJC, Harsh LN, Cruz G, Tewari JC, Cadoret K, Maldonado LJ (2001) The Prosopis julifloraProsopis pallida complex: a monograph. HDRA, Coventry, UK

    Google Scholar 

  • Paterson A, Felker P, Hubbell S, Ming R (2008) The fruits of tropical plant genomics. Trop Plant Biol 1:3–19

    Article  Google Scholar 

  • Pena L, Seguin A (2001) Recent advances in the genetic transformation of trees. Trends Biotechnol 19:500–506

    Article  CAS  PubMed  Google Scholar 

  • Plomion C, Bastien C, Bogeat-Triboulot M-B, Boufier L, Dejardin A, Duplessis S, Fady B, Heuertz M, Le Gac A-L, Provost GL, Legue V, Lelu-Walter M-A, Leple J-C, Maury S, Morel A, Oddou-Muratori S, Pilate G, Sanchez L, Scotti I, Scotti-Saintagen C, Segura V, Trontin J-F, Vacher C (2016) Forest tree genomics: 10 achievements from the past 10 years and future prospects. Ann For Sci 73:77–103

    Article  Google Scholar 

  • Rai MK, Shekhawat NS (2014) Recent advances in genetic engineering for improvement of fruit crops. Plant Cell Tiss Org Cult 116:1–15

    Article  CAS  Google Scholar 

  • Rai MK, Shekhawat NS (2015) Genomic resources in fruit plants: an assessment of current status. Crit Rev Biotechnol 35:438–447

    Article  CAS  PubMed  Google Scholar 

  • Rai MK, Asthana P, Jaiswal VS, Jaiswal U (2010) Biotechnological advances in guava (Psidium guajava L.): recent developments and prospects for further research. Trees-Struct Funct 24:1–12

    Article  CAS  Google Scholar 

  • Rai MK, Shekhawat JK, Kataria V, Shekhawat NS (2017a) Cross species transferability and characterization of microsatellite markers in Prosopis cineraria, a multipurpose tree species of Indian Thar Desert. Arid Land Res Manag 31:462–471

    Article  CAS  Google Scholar 

  • Rai MK, Shekhawat JK, Kataria V, Shekhawat NS (2017b) De novo assembly of leaf transcriptome, functional annotation and genomic resources development in Prosopis cineraria, a multipurpose tree of Indian Thar Desert. Plant Gene 12:88–97

    Article  Google Scholar 

  • Ramirez L, Vega A, Razkin N, Luna V, Harris PJC (1999) Analysis of the relationships between species of the genus Prosopis revealed by the use of molecular markers. Agron Trop 19:69–70

    Google Scholar 

  • Rathore TS, Deora NS, Shekhawat NS (1992) Cloning of Maytenus emarginata (wild.) Ding-Hou-A tree of Indian Desert, through tissue culture. Plant Cell Report 11:449–451

    Article  CAS  Google Scholar 

  • Rathore NS, Rai MK, Phulwaria M, Rathore N, Shekhawat NS (2014) Genetic stability in micropropagated Cleome gynandra revealed by SCoT analysis. Acta Physiol Plant 36:555–559

    Article  CAS  Google Scholar 

  • Salojärvi J, Smolander O-P, Nieminen K, Rajaraman S, Safronov O, Safdari P et al (2017) Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch. Nat Genet 49:904

    Article  CAS  PubMed  Google Scholar 

  • Sharma V, Sharma P (2020) Phyto-therapeutic potential of stem bark of the wonder tree, Prosopis cineraria (L.) Druce in LPS-induced mouse model: An anti-inflammatory study. Clin Phytosci 6:45

    Article  CAS  Google Scholar 

  • Sharma N, Garg V, Paul A (2010a) Antihyperglycemic, antihyperlipidemic and antioxidative potential of Prosopis cineraria bark. Indian J Clin Biochem 25:193–200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sharma SK, Rawat D, Kumar S, Kumar A, Kumaria S, Rao SR (2010b) Single primer amplification reaction (SPAR) reveals intra-specific natural variation in Prosopis cineraria (L.) Druce. Trees-Struct Funct 24:855–864

    Article  Google Scholar 

  • Sharma SK, Kumar S, Rawat D, Kumaria S, Kumar A, Rao SR (2011) Genetic diversity and gene flow estimation in Prosopis cineraria (L.) Druce: a key stone tree species of Indian Thar Desert. Biochem Syst Ecol 39:9–13

    Article  CAS  Google Scholar 

  • Shekhawat NS, Rathore TS, Singh RP, Deora NS, Rao SR (1993) Factors affecting in vitro clonal propagation of Prosopis cineraria. Plant Growth Regul 12:273–280

    Article  CAS  Google Scholar 

  • Shekhawat NS, Phulwaria M, Harish, Rai MK, Kataria V, Shekhawat S, Gupta AK, Rathore NS, Vyas M, Rathore N, Jb V, Choudhary SK, Patel AK, Lodha D, Modhi R (2012) Bioresearches of Fragile Ecosystem/ Desert. Proc Natl Acad Sci India Sect B: Biol Sci 82:319–334

    Google Scholar 

  • Shekhawat NS, Rai MK, Phulwaria M, Rathore JS, Gupta AK, Purohit M, Patel AK, Kataria V, Shekhawat S (2014) Tree biotechnology with special reference to species of fragile ecosystems and arid environments. In: Merillon JM, Ahuja MR (eds) Ramawat KG. Tree biotechnology, CRC Press, pp 187–222

    Google Scholar 

  • Shekhawat JK, Rai MK, Shekhawat NS, Kataria V (2018a) Exploring genetic variability in Prosopis cineraria using two gene targeted CAAT box-derived polymorphism (CBDP) and start codon targeted (SCoT) polymorphism markers. Mol Biol Rep 45:2359–2367

    Article  CAS  PubMed  Google Scholar 

  • Shekhawat JK, Rai MK, Shekhawat NS, Kataria V (2018b) Start codon targeted (SCoT) polymorphism for evaluation of genetic diversity of wild population of Maytenus emarginata. Ind Crops Prod 122:202–208

    Article  CAS  Google Scholar 

  • Singh AK (2004) Endangered economic species of Indian desert. Genetic Resour Crop Evol 51:371–380

    Article  Google Scholar 

  • Sivalingam PN, Samadia DK, Singh D, Changal HK, Khan H, Sharma SK (2011) Characterization of Prosopis cineraria (L.) Druce germplasm with suitable horticultural traits from the hot arid region of Rajasthan. India Genet Resour Crop Evol 58:1095–1103

    Article  Google Scholar 

  • Sivalingam PN, Samadia DK, Singh D, Chauhan S (2016) Molecular markers to distinguish ‘Thar Shoba’, a variety of khejri [Prosopis cineraria (L.) Druce], from trees in natural populations. J Hortic Sci Biotechnol 91:353–361

    Article  Google Scholar 

  • Sood S, Joshi DC, Chandra AK, Kumar A (2019) Phenomics and genomics of finger millet: current status and future prospects. Planta 250:731–751

    Article  CAS  PubMed  Google Scholar 

  • Stevens KA, Wegrzyn JL, Zimin A, Puiu D, Crepeau M, Cardeno C et al (2016) Sequence of the sugar pine megagenome. Genetics 204:1613–1626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Torales SL, Rivarola M, Pomponio MF, Gonzalez S, Acuña CV, Fernández P, Lauenstein DL, Verga AR, Hopp HE, Paniego NB, Poltri SN (2013) De novo assembly and characterization of leaf transcriptome for the development of functional molecular markers of the extremophile multipurpose tree species Prosopis alba. BMC Genom 14:705

    Article  Google Scholar 

  • Tuskan GA, DiFazio S, Jansson S et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Glaszmann JC, Leung H, Ribaut JM (2010) More genomic resources for less-studied crops. Trends Biotechnol 28:452–460

    Article  CAS  PubMed  Google Scholar 

  • Vecchietti A, Lazzari B, Ortugno C, Bianchi F, Caprera A, Malinverni R, Mignani I, Pozzi C (2009) Comparative analysis of expressed sequence tags from tissues in ripening stages of peach (Prunus persica L.). Tree Genet Genomes 5:377–391

    Article  Google Scholar 

  • Venkatachalam P, Jinu U, Gomathi M, Mahendran D, Ahmad N, Geetha N, Sahi SV (2017) Role of silver nitrate in plant regeneration from cotyledonary nodal segment explants of Prosopis cineraria (L.) Druce.: a recalcitrant medicinal leguminous tree. Biocatal Agric Biotechnol 12:286–291

    Article  Google Scholar 

  • Vierling E (1991) The roles of heat-shock proteins in plants. Annu Rev Plant Biol 42:579–620

    Article  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Das A, Kainer D, Schalamun M, Morales-Suarez A, Schwessinger B, Lanfear R (2020) The draft nuclear genome assembly of Eucalyptus pauciflora: a pipeline for comparing de novo assemblies. GigaScience 9: giz160

  • White PR (1943) A handbook of plant tissue culture. Jaques Cattell Press, Lancaster, p 277

    Google Scholar 

  • Xing Y, Liu Y, Zhang Q et al. (2019) Hybrid de novo genome assembly of Chinese chestnut (Castanea mollissima). GigaScience 8: giz112

  • Yadav E, Singh D, Yadav P, Verma A (2018) Antioxidant and anti-inflammatory properties of Prosopis cineraria based phenolic rich ointment in wound healing. Biomed Pharmacotherap 108:1572–1583

    Article  CAS  Google Scholar 

  • Yang W, Wang K, Zhang J, Ma J, Liu J, Ma T (2017) The draft genome sequence of a desert tree Populus pruinosa. GigaScience 6:1–7

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhao D, Hamilton JP, Bhat WW, Johnson SR, Godden GT, Kinser TJ et al. (2019) A chromosomal-scale genome assembly of Tectona grandis reveals the importance of tandem gene duplication and enables discovery of genes in natural product biosynthetic pathways. GigaScience 8: giz005

  • Zimin A, Stevens KA, Crepeau, et al (2014) Sequencing and assembly of the 22-Gb loblolly pine genome. Genet 196(3):875–890

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from SERB, New Delhi (MKR; Young Scientist; SB/YS/LS-292/2013) and UGC, New Delhi (JKS; Junior and Senior Research Fellowship).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj K. Rai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by M. Buckeridge.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, M.K., Shekhawat, J.K., Kataria, V. et al. Genomic and biotechnological interventions in Prosopis cineraria: current status, challenges and opportunities. Trees 35, 1109–1121 (2021). https://doi.org/10.1007/s00468-020-02073-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-020-02073-9

Keywords

Navigation