Skip to main content
Log in

Molecular cloning and functional analysis of the BplSPL1 gene from Betula platyphylla Suk.

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

BplSPL1 gene was identified in Betula platyphylla Suk, and its sequence features and gene function expression have provided useful information for further studies on function.

Abstract

SQUAMOSA promoter-binding protein-like (SPL) are plant-specific transcription factors that play an important regulatory role in plant growth and development. In this study, an SPL gene, BplSPL1, was cloned from Betula platyphylla Suk. (white birch). Sequence analysis revealed that BplSPL1 has a 405 bp open reading frame (ORF) and encodes a protein of 134 amino acids, which contains a highly conserved SQUAMOSA promoter-binding protein (SBP) domain belonging to the SPL family. Quantitative RT-PCR analysis showed that BplSPL1 was more highly expressed in mature leaf as well as male and female inflorescences. The ectopic expression of BplSPL1 in Arabidopsis led to early flowering, reduced number of rosette leaves, and increased number of lateral branches. We also found that plant height of the transgenic plants decreased, and length of the siliques was shorter in the 35S::BplSPL1 transgenic plants. Further studies showed that the early-flowering phenotype in 35S::BplSPL1 transgenic plants was related to changes in the expression of flowering time genes and flower meristem identity genes, including CUC, FUL, DCL, and SOC1. Therefore, the above results indicate that: (1) BplSPL1 may be involved in regulating flowering time and phase transition, and (2) BplSPL1 may interact with other genes to regulate plant height and the development of lateral branches and fruit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aida M, Tasaka M (2006) Morphogenesis and patterning at the organ boundaries in the higher plant shoot apex u. Plant Mol Biol 60(6):915–928

    CAS  PubMed  Google Scholar 

  • Aida M, Ishida T et al (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9(6):841–857

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Buylla ER, Benitez M et al (2010) Flower development. The Arabidopsis Book 8:e0127

    PubMed  PubMed Central  Google Scholar 

  • Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15(11):2730–2741

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aung B, Gruber MY et al (2015) Ectopic expression of LjmiR156 delays flowering, enhances shoot branching, and improves forage quality in alfalfa. Plant Biotechnol Rep 9(6):379–393

    Google Scholar 

  • Bartel B, Bartel DP (2003) MicroRNAs: at the root of plant development? Plant Physiol 132(2):709–717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cardon GH, Hohmann S et al (1997) Functional analysis of the Arabidopsis thaliana SBP-box gene SPL3: a novel gene involved in the floral transition. Plant J 12(2):367–377

    CAS  PubMed  Google Scholar 

  • Chang S, Puryear J et al (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11(2):113–116

    CAS  Google Scholar 

  • Chuck G, Cigan AM et al (2007) The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nat Genet 39(4):544–549

    CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant J 16(6):735–743

    CAS  PubMed  Google Scholar 

  • Eriksson EM, Bovy A et al (2004) Effect of the Colorless non-ripening mutation on cell wall biochemistry and gene expression during tomato fruit development and ripening. Plant Physiol 136(4):4184–4197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gandikota M, Birkenbihl RP et al (2007) The miRNA156/157 recognition element in the 3′ UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J 49(4):683–693

    CAS  PubMed  Google Scholar 

  • Han Y, Ma Y et al (2016) Characterization and phylogenetic analysis of fifteen NtabSPL genes in Nicotiana tabacum L. cv. Qinyan95. Dev Genes Evol 226(1):1–14

    CAS  PubMed  Google Scholar 

  • Hou X, Zhou J et al (2014) Nuclear factor Y-mediated H3K27me3 demethylation of the SOC1 locus orchestrates flowering responses of Arabidopsis. Nat Commun 5:4601

    CAS  PubMed  Google Scholar 

  • Hyun Y, Richter R et al (2016) Multi-layered Regulation of SPL15 and Cooperation with SOC1 Integrate Endogenous Flowering Pathways at the Arabidopsis Shoot Meristem. Dev Cell 37(3):254–266

    CAS  PubMed  Google Scholar 

  • Hyun Y, Richter R et al (2017) Competence to flower: age-controlled sensitivity to environmental cues. Plant Physiol 173(1):36–46

    CAS  PubMed  Google Scholar 

  • Jack T (2004) Molecular and genetic mechanisms of floral control. Plant Cell 16S:S1–S17

    Google Scholar 

  • Jiao Y, Wang Y et al (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42(6):541-U36

    Google Scholar 

  • Jung J, Seo Y et al (2007) The GIGANTEA-regulated MicroRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell 19(9):2736–2748

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jung J, Ju Y et al (2012) The SOC1-SPL module integrates photoperiod and gibberellic acid signals to control flowering time in Arabidopsis. Plant J 69(4):577–588

    CAS  PubMed  Google Scholar 

  • Kim JJ, Lee JH et al (2012) The microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 module regulates ambient temperature-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Plant Physiol 159(1):461–478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klein J, Saedler H et al (1996) A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA. Mol Gen Genet 250(1):7–16

    CAS  PubMed  Google Scholar 

  • Lannenpaa M, Janonen I et al (2004) A new SBP-box gene BpSPL1 in silver birch (Betula pendula). Physiol Plant 120(3):491–500

    PubMed  Google Scholar 

  • Lee J, Oh M et al (2008) SOC1 translocated to the nucleus by interaction with AGL24 directly regulates LEAFY. Plant J 55(5):832–843

    CAS  PubMed  Google Scholar 

  • Li C, Lu S (2014) Molecular characterization of the SPL gene family in Populus trichocarpa. BMC Plant Biol 14(1):131

    PubMed  PubMed Central  Google Scholar 

  • Li M, Zhao SZ et al (2016) Cloning and characterization of SPL-family genes in the peanut (Arachis hypogaea L). Genet Mol Res 15(1):150173441

    Google Scholar 

  • Liu X, Yang C (2006) Temporal characteristics of developmental cycles of female and male flowers in Betula platyphylla. In Northeastern China. Scientia Silvae Sinicae 42(12):28–32

    Google Scholar 

  • Liu Q, Shen G et al (2015) The alteration in the architecture of a T-DNA insertion rice mutant osmtd1 is caused by up-regulation of MicroRNA156f. J Integr Plant Biol 57(10):819–829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo L, Li W et al (2012) Control of tiller growth of rice by OsSPL14 and Strigolactones, Which work in two independent pathways. Plant Cell Physiol 53(10):1793–1801

    CAS  PubMed  Google Scholar 

  • Mandel MA, Yanofsky MF (1995) A gene triggering flower formation in Arabidopsis. Nature 377(6549):522–524

    CAS  PubMed  Google Scholar 

  • Manning K, Tor M et al (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38(8):948–952

    CAS  PubMed  Google Scholar 

  • May P, Liao W et al (2013) The effects of carbon dioxide and temperature on microRNA expression in Arabidopsis development. Nat Commun 4:2145

    PubMed  Google Scholar 

  • Moon J, Suh SS et al (2003) The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J 35(5):613–623

    CAS  PubMed  Google Scholar 

  • Mothersill DH, Macdonald AD (1987) Shoot development in Betula papyrifera. VI. Development of the reproductive structures. Can J Bot 65(3):466–475

    Google Scholar 

  • Perala DA, Alm AA (1990) Reproductive ecology of birch: a review. For Ecol Manage 32:1–38

    Google Scholar 

  • Preston JC, Hileman LC (2010) SQUAMOSA-PROMOTER BINDING PROTEIN 1 initiates flowering in Antirrhinum majus through the activation of meristem identity genes. Plant J 62(4):704–712

    CAS  PubMed  Google Scholar 

  • Preston JC, Jorgensen SA et al (2016) Paralogous SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes differentially regulate leaf initiation and reproductive phase change in petunia. Planta 243(2):429–440

    CAS  PubMed  Google Scholar 

  • Sachin TGT (2015) To bloom or not to bloom: role of MicroRNAs in plant flowering. Mol Plant 8(3):359–377

    Google Scholar 

  • Schauer SE, Jacobsen SE et al (2002) DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends Plant Sci 7(11):487–491

    CAS  PubMed  Google Scholar 

  • Shikata M, Koyama T et al (2009) Arabidopsis SBP-Box Genes SPL10, SPL11 and SPL2 control morphological change in association with shoot maturation in the reproductive phase. Plant Cell Physiol 50(12):2133–2145

    CAS  PubMed  Google Scholar 

  • Stone JM, Liang X et al (2005) Arabidopsis AtSPL14, a plant-specific SBP-domain transcription factor, participates in plant development and sensitivity to fumonisin B1. Plant J 41(5):744–754

    CAS  PubMed  Google Scholar 

  • Takada S, Hibara K et al (2001) The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development (Cambridge, England) 128(7):1127–1135

    CAS  Google Scholar 

  • Titel C, Ehwald R et al (1987) A parenchymatic medium solidifier for plant in vitro culture. Plant Cell Rep 6(6):473–475

    CAS  PubMed  Google Scholar 

  • Unte US, Sorensen AM et al (2003) SPL8, an SBP-Box gene that affects pollen sac development in Arabidopsis. Plant Cell 15(4):1009–1019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Usami T, Horiguchi G et al (2009) The more and smaller cells mutants of Arabidopsis thaliana identify novel roles for SQUAMOSA PROMOTER BINDING PROTEIN-LIKE genes in the control of heteroblasty. Development 136(6):955–964

    CAS  PubMed  Google Scholar 

  • Vroemen CW, Mordhorst AP et al (2003) The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis. Plant Cell 15(7):1563–1577

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Schwab R et al (2008) Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. Plant Cell 20(5):1231–1243

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Wang Y et al (2016) SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 2 controls floral organ development and plant fertility by activating ASYMMETRIC LEAVES 2 in Arabidopsis thaliana. Plant Mol Biol 92(6):661–674

    CAS  PubMed  Google Scholar 

  • Wu G, Poethig RS (2006) Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133(18):3539–3547

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Park MY et al (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138(4):750–759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie K, Wu C et al (2006) Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Physiol 142(1):280–293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi A, Wu M et al (2009) The MicroRNA-regulated SBP-Box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1. Dev Cell 17(2):268–278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamasaki K, Kigawa T et al (2004) A novel zinc-binding motif revealed by solution structures of DNA-binding domains of Arabidopsis SBP-family transcription factors. J Mol Biol 337(1):49–63

    CAS  PubMed  Google Scholar 

  • Zhang Y, Schwarz S et al (2007) SPL8, a local regulator in a subset of gibberellin-mediated developmental processes in Arabidopsis. Plant Mol Biol 63(3):429–439

    CAS  PubMed  Google Scholar 

  • Zhang X, Dou L et al (2015) Genomic organization, differential expression, and functional analysis of the SPL gene family in Gossypium hirsutum. Mol Genet Genomics 290(1):115–126

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Fundamental Research Funds for the Central Universities (2572015EA05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuemei Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by Carlson.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, J., Hu, X., Zhang, Y. et al. Molecular cloning and functional analysis of the BplSPL1 gene from Betula platyphylla Suk.. Trees 34, 801–811 (2020). https://doi.org/10.1007/s00468-020-01959-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-020-01959-y

Keywords

Navigation