Skip to main content
Log in

Cloning and functional characterization of a novel BpSEP4 gene from Betula platyphylla Suk.

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

SEPALLATA (SEP) genes, members of a family of MADS-box transcription factors, have essential roles in floral organ development and flowering time. In this study, a novel SEP gene, BpSEP4, was identified from Betula platyphylla Suk. The full-length BpSEP4 cDNA was 928 bp, and it contained highly conserved MADS and K domains characteristic of the SEP subfamily. Subcellular location analysis demonstrated that BpSEP4 localized in the nucleus. qRT-PCR analysis showed that BpSEP4 expression was highest in reproductive organs, where it played an essential role in inflorescence development. The ectopic expression of BpSEP4 in Arabidopsis thaliana caused early flowering and aberrant floral organ development. Moreover, delayed flower senescence and abscission were also observed in transgenic Arabidopsis plants. Further studies demonstrated that the early-flowering phenotype in 35S::BpSEP4 transgenic plants was caused by changes in the expression of flowering time genes and flower meristem identity genes, including CO, FT, SOC1, and TFL1. These results indicate that BpSEP4 is a SEP ortholog that may be involved in controlling flowering time and floral development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albani MC, Coupland G (2010) Comparative analysis of flowering in annual and perennial plants. Curr Top Dev Biol 91:323–348

    Article  CAS  PubMed  Google Scholar 

  • Ampomah-Dwamena C, Morris BA, Sutherland P, Veit B, Yao JL (2002) Down-regulation of TM29, a tomato SEPALLATA homolog, causes parthenocarpic fruit development and floral reversion. Plant Physiol 130:605–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An X, Ye M, Wang D, Wang Z, Cao G, Zheng H, Zhang Z (2011) Ectopic expression of a poplar APETALA3-like gene in tobacco causes early flowering and fast growth. Biotechnol Lett 33:1239–1247

    Article  CAS  PubMed  Google Scholar 

  • Angenent GC, Franken J, Busscher M, Weiss D, van Tunen AJ (1994) Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem. Plant J 5:33–44

    Article  CAS  PubMed  Google Scholar 

  • Battaglia R, Brambilla V, Colombo L, Stuitje AR, Kater MM (2006) Functional analysis of MADS-box genes controlling ovule development in Arabidopsis using the ethanol-inducible alc gene-expression system. Mech Dev 123:267–276

    Article  CAS  PubMed  Google Scholar 

  • Butenko MA, Patterson SE, Grini PE, Stenvik GE, Amundsen SS, Mandal A, Aalen RB (2003) Inflorescence deficient in abscission controls floral organ abscission in Arabidopsis and identifies a novel family of putative ligands in plants. Plant Cell 15:2296–2307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Causier B, Schwarz-Sommer Z, Davies B (2010) Floral organ identity: 20 years of ABCs. Semin Cell Dev Biol 21:73–79

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    CAS  PubMed  Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    Article  CAS  PubMed  Google Scholar 

  • Cseke LJ, Cseke SB, Ravinder N, Taylor LC, Shankar A, Sen B, Thakur R, Karnosky DF, Podila GK (2005) SEP-class genes in Populus tremuloides and their likely role in reproductive survival of poplar trees. Gene 358:1–16

    Article  CAS  PubMed  Google Scholar 

  • Cui R, Han J, Zhao S, Su K, Wu F, Du X, Xu Q, Chong K, Theissen G, Meng Z (2010) Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa). Plant J 61:767–781

    Article  CAS  PubMed  Google Scholar 

  • Dahl AE, Fredrikson M (1996) The timetable for development of maternal tissues sets the stage for male genomic selection in Betula pendula (Betulaceae). Am J Bot 83(7):895–902

    Article  Google Scholar 

  • Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol 14:1935–1940

    Article  CAS  PubMed  Google Scholar 

  • Estornell LH, Wildhagen M, Perez-Amador MA, Talon M, Tadeo FR, Butenko MA (2015) The IDA peptide controls abscission in Arabidopsis and Citrus. Front Plant Sci 6:1003

    Article  PubMed  PubMed Central  Google Scholar 

  • Favaro R, Pinyopich A, Battaglia R, Kooiker M, Borghi L, Ditta G, Yanofsky MF, Kater MM, Colombo L (2003) MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell 15:2603–2611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrario S, Immink RG, Shchennikova A, Busscher-Lange J, Angenent GC (2003) The MADS box gene FBP2 is required for SEPALLATA function in petunia. Plant Cell 15:914–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X, Liang W, Yin C, Ji S, Wang H, Su X, Guo C, Kong H, Xue H, Zhang D (2010) The SEPALLATA-like gene OsMADS34 is required for rice inflorescence and spikelet development. Plant Physiol 153:728–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao J, Huang BH, Wan YT, Chang J, Li JQ, Liao PC (2017) Functional divergence and intron variability during evolution of angiosperm TERMINAL FLOWER1 (TFL1) genes. Sci Rep 7:14830

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo X, Chen G, Naeem M, Yu X, Tang B, Li A, Hu Z (2017) The MADS-box gene SlMBP11 regulates plant architecture and affects reproductive development in tomato plants. Plant Sci 258:90–101

    Article  CAS  PubMed  Google Scholar 

  • Honma T, Goto K (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409:525–529

    Article  CAS  PubMed  Google Scholar 

  • Hsu CY, Adams JP, Kim H, No K, Ma C, Strauss SH, Drnevich J, Vandervelde L, Ellis JD, Rice BM, Wickett N, Gunter LE, Tuskan GA, Brunner AM, Page GP, Barakat A, Carlson JE, DePamphilis CW, Luthe DS, Yuceer C (2011) FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar. Proc Natl Acad Sci U S A 108:10756–10761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu W, Yeh T, Huang K, Li J, Chen H, Yang C (2014) AGAMOUS-LIKE13, a putative ancestor for the E functional genes, specifies male and female gametophyte morphogenesis. Plant J 77:1–15

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Wang S, Jiang J, Liu G, Li H, Chen S, Xu H (2014) Overexpression of BpAP1 induces early flowering and produces dwarfism in Betula platyphylla x Betula pendula. Physiol Plant 151:495–506

    Article  CAS  PubMed  Google Scholar 

  • Jaakola L, Pirttila AM, Halonen M, Hohtola A (2001) Isolation of high quality RNA from bilberry (Vaccinium myrtillus L.) fruit. Mol Biotechnol 19:201–203

    Article  CAS  PubMed  Google Scholar 

  • Kater MM, Dreni L, Colombo L (2006) Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis. J Exp Bot 57:3433–3444

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Soltis PS, Wall K, Soltis DE (2006) Phylogeny and domain evolution in the APETALA2-like gene family. Mol Biol Evol 23:107–120

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Yasuno N, Sato Y, Yoda M, Yamazaki R, Kimizu M, Yoshida H, Nagamura Y, Kyozuka J (2012) Inflorescence meristem identity in rice is specified by overlapping functions of three AP1/FUL-like MADS box genes and PAP2, a SEPALLATA MADS box gene. Plant Cell 24:1848–1859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Lee I (2010) Regulation and function of SOC1, a flowering pathway integrator. J Exp Bot 61:2247–2254

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Suh SS, Park E, Cho E, Ahn JH, Kim SG, Lee JS, Kwon YM, Lee I (2000) The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev 14:2366–2376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemmetyinen J, Hassinen M, Elo A, Porali I, Keinonen K, Makela H, Sopanen T (2004) Functional characterization of SEPALLATA3 and AGAMOUS orthologues in silver birch. Physiol Plant 121:149–162

    Article  CAS  PubMed  Google Scholar 

  • Li J, Fan SL, Song MZ, Pang CY, Wei HL, Li W, Ma JH, Wei JH, Jing JG, Yu SX (2013) Cloning and characterization of a FLO/LFY ortholog in Gossypium hirsutum L. Plant Cell Rep 32:1675–1686

    Article  CAS  PubMed  Google Scholar 

  • Li X, Fan T, Song J, Sun W, Xia K, Liao J, Zhang M (2014) Functional conservation and divergence of four ginger AP1/AGL9 MADS-box genes revealed by analysis of their expression and protein-protein interaction, and ectopic expression of AhFUL gene in Arabidopsis. PLoS ONE 9:e114134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu X, Yang CP (2006) Temporal characteristics of developmental cycles of female and male flowers in Betula platyphylla in Northeastern China. Sci Silvae Sin 42(12):28–33

    Google Scholar 

  • Liu X, Wang Q, Chen P, Song F, Guan M, Jin L, Wang Y, Yang C (2012) Four novel cellulose synthase (CESA) genes from birch (Betula platyphylla Suk.) involved in primary and secondary cell wall biosynthesis. Int J Mol Sci 13:12195–12212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Wang D, Qin Z, Zhang D, Yin L, Wu L, Colasanti J, Li A, Mao L (2014) The SEPALLATA MADS-box protein SLMBP21 forms protein complexes with JOINTLESS and MACROCALYX as a transcription activator for development of the tomato flower abscission zone. Plant J 77:284–296

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Zhang J, Abuahmad A, Franks RG, Xie DY, Xiang QY (2016) Analysis of two TFL1 homologs of dogwood species (Cornus L.) indicates functional conservation in control of transition to flowering. Planta 243:1129–1141

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods (San Diego, Calif) 25:402–408

    Article  CAS  Google Scholar 

  • Malcomber ST, Kellogg EA (2005) SEPALLATA gene diversification: brave new whorls. Trends Plant Sci 10:427–435

    Article  CAS  PubMed  Google Scholar 

  • Meng Q, Li X, Zhu W, Yang L, Liang W, Dreni L, Zhang D (2017) Regulatory network and genetic interactions established by OsMADS34 in rice inflorescence and spikelet morphogenesis. J Integr Plant Biol 59:693–707

    Article  CAS  PubMed  Google Scholar 

  • Moon J, Lee H, Kim M, Lee I (2005) Analysis of flowering pathway integrators in Arabidopsis. Plant Cell Physiol 46:292–299

    Article  CAS  PubMed  Google Scholar 

  • Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200–203

    Article  CAS  PubMed  Google Scholar 

  • Pelaz S, Gustafson-Brown C, Kohalmi SE, Crosby WL, Yanofsky MF (2001) APETALA1 and SEPALLATA3 interact to promote flower development. Plant J 26:385–394

    Article  CAS  PubMed  Google Scholar 

  • Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, Wisman E, Yanofsky MF (2003) Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424:85–88

    Article  CAS  PubMed  Google Scholar 

  • Pnueli L, Hareven D, Broday L, Hurwitz C, Lifschitz E (1994) The TM5 MADS box gene mediates organ differentiation in the three inner whorls of tomato flowers. Plant Cell 6:175–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roldan M, Perilleux C, Morin H, Huerga-Fernandez S, Latrasse D, Benhamed M, Bendahmane A (2017) Natural and induced loss of function mutations in SlMBP21 MADS-box gene led to jointless-2 phenotype in tomato. Sci Rep 7:4402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schwarz S, Grande AV, Bujdoso N, Saedler H, Huijser P (2008) The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Mol Biol 67:183–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shannon S, Meeks-Wagner DR (1991) A mutation in the Arabidopsis TFL1 Gene Affects Inflorescence Meristem Development. Plant Cell 3:877–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Switzenberg JA, Beaudry RM, Grumet R (2015) Effect of CRC::etr1-1 transgene expression on ethylene production, sex expression, fruit set and fruit ripening in transgenic melon (Cucumis melo L.). Transgenic Res 24:497–507

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S, (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution 30 (12):2725-2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang M, Bai X, Niu LJ, Chai X, Chen MS, Xu ZF (2018) miR172 regulates both vegetative and reproductive development in the perennial woody plant Jatropha curcas. Plant Cell Physiol 59:2549–2563

  • Theissen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4:75–85

    Article  CAS  PubMed  Google Scholar 

  • Theissen G, Melzer R (2007) Molecular mechanisms underlying origin and diversification of the angiosperm flower. Ann Bot 100:603–619

    Article  PubMed  PubMed Central  Google Scholar 

  • Theissen G, Saedler H (2001) Plant biology. Floral quartets. Nature 409:469–471

    Article  CAS  PubMed  Google Scholar 

  • Thompson J D, Gibson T J, Plemniak F, Jeanmougin F, Higgins D G (1997). The clustal X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25: 4876-4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Topping JF, Lindsey K (1997) Molecular characterization of transformed plants. In: Clark MS (ed) Plant molecular biology. A laboratory manual. Springer-Verlag, Berlin-Heidelberg-New York, pp 427–442

    Chapter  Google Scholar 

  • Tzeng TY, Hsiao CC, Chi PJ, Yang CH (2003) Two lily SEPALLATA-like genes cause different effects on floral formation and floral transition in Arabidopsis. Plant Physiol 133:1091–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uimari A, Kotilainen M, Elomaa P, Yu D, Albert VA, Teeri TH (2004) Integration of reproductive meristem fates by a SEPALLATA-like MADS-box gene. Proc Natl Acad Sci U S A 101:15817–15822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science 296:343–346

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Lu S, Yi S, Han H, Liu L, Zhang J, Bao M, Liu G (2017) Functional conservation and divergence of five SEPALLATA-like genes from a basal eudicot tree, Platanus acerifolia. Planta 245:439–457

    Article  CAS  PubMed  Google Scholar 

  • Zhao XY, Cheng ZJ, Zhang XS (2006) Overexpression of TaMADS1, a SEPALLATA-like gene in wheat, causes early flowering and the abnormal development of floral organs in Arabidopsis. Planta 223:698–707

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge TopEdit LLC for the linguistic editing and proofreading during the preparation of this manuscript.

Author contributions statement

XL conceived and designed the experiments. YZ and XH performed qRT-PCR and genetic transformation experiments. JT performed the bioinformatics analysis. QX performed statistical analysis and revised the manuscript. DL and LY performed subcellular localization analysis. XH performed phenotypic analysis and wrote the paper. All authors read and approved the final manuscript.

Data archiving statement

The full-length cDNA sequences have been submitted to GenBank with the accession number MK142678 for BpSEP4.

Funding

This work was supported by the Fundamental Research Funds for the Fundamental Research Funds for the Central Universities (2572017AA01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuemei Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by F. P. Guerra

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Table S1

(XLSX 10 kb)

Table S2

(XLSX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Tian, J., Xin, Q. et al. Cloning and functional characterization of a novel BpSEP4 gene from Betula platyphylla Suk.. Tree Genetics & Genomes 16, 13 (2020). https://doi.org/10.1007/s11295-019-1405-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-019-1405-y

Keywords

Navigation