Skip to main content
Log in

Eucalyptus nitens plant regeneration from seedling explants through direct adventitious shoot bud formation

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

A protocol for true-to-type plantlets production by direct adventitious bud proliferation from Eucalyptus nitens hypocotyl segments was developed.

Abstract

Hypocotyls, cotyledons, and expanded leaves of Eucalyptus nitens were cultured in Murashige and Skoog (MS) medium containing naphthalene acetic acid or indole-3-acetic acid (IAA) and 6-benzyl adenine (BA). The most effective treatment for shoot bud formation, 0.5 μM IAA and 2.5 μM BA, was used in additional experiments. After 30 days of culture, the highest rate of regeneration (40 ± 5.8%) and the maximum number of buds differentiated per hypocotyl explant (10.3 ± 4) were obtained when explants were subjected to darkness for the first 10 days and then transferred to light-emitting diode lights mimicking daylight for 20 days of incubation. Histological examination confirmed direct shoot regeneration of E. nitens. For shoot growth, half-strength MS plus 0.09 M sucrose under forced ventilation yielded elongated shoots after 1 month. After 12 weeks from the onset of an experiment, 40 ± 11.5% of elongated shoots produced 5.3 ± 0.8 roots after pretreatment with indole-3-butyric acid aqueous solution and culture on basal medium without plant growth regulators under a temporary immersion system. Inter simple sequence repeat (ISSR) marker analysis revealed the genetic uniformity among the in vitro raised plants, demonstrating the reliability of the procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Azmi A, Noin M, Landré P, Prouteau M, Boudet AM, Chriqui D (1997) High frequency plant regeneration from Eucalyptus globulus Labill. hypocotyls: ontogenesis and ploidy level of the regenerants. Plant Cell Tissue Organ Cult 51:9–16

    Article  Google Scholar 

  • Balzarini M, Di Rienzo J (2013) Info-Gen: software para análisis estadístico de datos genéticos. Facultad de Ciencias Agropecuarias. Universidad Nacional de Córdoba, Argentina. http://www.info-gen.com.ar. Accessed 9 Sept 2013

  • Bandyopadhyay S, Hamill JD (2000) Ultrastructural studies of somatic embryos of Eucalyptus nitens and comparisons with zygotic embryos found in mature seeds. Ann Bot 86:237–244

    Article  Google Scholar 

  • Bandyopadhyay S, Cane K, Rasmussen G, Hamill JD (1999) Efficient plant regeneration from seedling explants of two commercially important temperate eucalypt species–Eucalyptus nitens and E. globulus. Plant Sci 140:189–198

    Article  CAS  Google Scholar 

  • Brugnoli E, Urbani M, Quarin C, Martínez E, Acuña C (2013) Diversity in diploid, tetraploid, and mixed diploid–tetraploid populations of Paspalum simplex. Crop Sci 53:1509–1516

    Article  Google Scholar 

  • Bunn E, Turner S, Panaia M, Dixon KW (2007) The contribution of in vitro technology and cryogenic storage to conservation of indigenous plants. Aust J Bot 55:345–355

    Article  Google Scholar 

  • Denison NP, Kietzka JE (1993) The development and utilization of vegetative propagation in Mondi for commercial afforestation programmes. South Afr For J 165:47–54

    Google Scholar 

  • Dibax R, Eisfeld CL, Cuquel FL, Koehler H, Quoirin M (2005) Plant regeneration from cotyledonary explants of Eucalyptus camaldulensis. Sci Agric 62:406–412

    Article  Google Scholar 

  • Glocke P, Collins G, Sedgley M (2005) In vitro organogenesis from seedling explants of the ornamentals Eucalyptus erythronema, E. stricklandii and the interspecific hybrid E. erythronema × E. stricklandii cv. ‘Urrbrae Gem’. J Hortic Sci Biotechnol 80:97–104

    Article  Google Scholar 

  • Gomes F, Canhoto JM (2003) Micropropagation of Eucalyptus nitens maiden (shining gum). Vitro Cell Dev Biol Plant 39:316–321

    Article  CAS  Google Scholar 

  • González AM, Cristóbal CL (1997) Anatomía y ontogenia de semillas de Helicteres lhotzkyana (Sterculiaceae). Bonplandia 9:287–294

    Article  Google Scholar 

  • Hamilton MG, Dutkowski GW, Joyce KR, Potts BM (2011) Meta-analysis of racial variation in Eucalyptus nitens and E. denticulate. N Z J For Sci 41:217–230

    Google Scholar 

  • Harwood C (2015) Classical genetics and traditional breeding. In: Henry R, Kole C (eds) Genetic, genomics, and breeding of eucalypts. Taylor & Francis, Boca Raton, pp 12–33

    Google Scholar 

  • Huang X, Chen J, Bao Y, Liu L, Jiang H, An X, Dai L, Wang B, Peng D (2014) Transcript profiling reveals auxin and cytokinin signaling pathways and transcription regulation during in vitro organogenesis of ramie (Boehmeria nivea L. Gaud). Plos One 9:e113768

    Article  Google Scholar 

  • Humara JM, López M, Casares A, Majada J (2000) Temperature and provenance as two factors affecting Eucalyptus nitens seed germination. Forestry 73:87–90

    Article  Google Scholar 

  • Leva AR, Petruccelli R, Rinaldi LMR (2012) Somaclonal variation in tissue culture: A case study with olive. In: Leva A, Rinaldi L (eds) Recent Advances in Plant in vitro Culture, vol Chapter 7. In Tech, London. https://doi.org/10.5772/50367

    Chapter  Google Scholar 

  • Lorenzo J, González J, Escalona M, Teisson C, Espinosa P, Borroto C (1998) Sugarcane shoot formation in an improved temporary immersion system. Plant Cell Tissue Organ Cult 54:197–200

    Article  CAS  Google Scholar 

  • Luna CV, Gonzalez AM, Mroginski LA, Sansberro PA (2017) Anatomical and histological features of Ilex paraguariensis leaves under different in vitro shoot culture systems. Plant Cell Tissue Organ Cult 129:457–467

    Article  Google Scholar 

  • Maile N, Nieuwenhuis M (1996) Vegetative propagation of Eucalyptus nitens using stem cuttings. South Afr For J 175:29–35

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakhooda M, Jain SM (2016) A review of Eucalyptus propagation and conservation. Propag Ornam Plants 16:101–119

    Google Scholar 

  • Orwa C, Mutua A, Kindt R, Jamnadass R, Anthony S (2009) Agroforestree database: a tree reference and selection guide version 4.0. http://www.worldagroforestry.org/sites/treedbs/treedatabases.asp

  • RIRDC (2009) Trees for farm forestry: 22 promising species. Eucalyptus nitens (Deane and Maiden) Maide. CSIRO forest and forestry production. Publication No. 09/015, pp 110-117

  • Silva ALL, Gollo AL, Brondani GE, Horbach MA, Oliveira LS, Machado MP, Lima KKD, Costa JL (2015) Micropropagation of Eucalyptus saligna Sm. from cotyledonary nodes. Pak J Bot 47:311–318

    Google Scholar 

  • Tibbits WN, Potts BM, Savva MH (1991) Inheritance of freezing resistance in interspecific F1 hybrids of Eucalyptus. Theoret Appl Genet 83:126–135

    Article  CAS  Google Scholar 

  • Traas J (2019) Organogenesis at the shoot apical meristem. Plants 8:6. https://doi.org/10.3390/plants8010006

    Article  Google Scholar 

  • Trueman SJ, Hung CD, Wendling I (2018) Tissue culture of Corymbia and Eucalyptus. Forests 9:84

    Article  Google Scholar 

  • Turnbull JW, Doran JC (1987) Seed development and germination in the Myrtaceae. In: Langkamp P (ed) Germination of Australian native plant seed. Inkata Press, Melbourne, pp 46–57

    Google Scholar 

  • Vega M, Hamilton MG, Blackburn DP, McGavin RL, Baillères H, Potts BM (2016) Influence of site, storage and steaming on Eucalyptus nitens log-end splitting. Ann For Sci 73:257–266

    Article  Google Scholar 

  • Vernoux T, Brunoud G, Farcot E, Morin V, Van den Daele H, Legrand J, Oliva M, Das P, Larrieu A, Wells D, Guéon Y, Armitage L, Picard F, Guyomarc’h S, Cellier C, Parry G, Koumproglou R, Doonan JH, Estelle M, Godin C, Kepinski S, Bennett M, De Veylder L, Traas J (2011) The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Mol Syst Biol 7:508. https://doi.org/10.1038/msb.2011.39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Secretaría General de Ciencia y Técnica, Universidad Nacional del Nordeste (PI A001/14, PI A002/18) and Forestal Bosques del Plata S.A. (FBDP). E. Brugnoli, C. Luna, A. González, and P. Sansberro are members of the Research Council of Argentina (CONICET). G. Ayala received a scholarship from CONICET and FBDP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro A. Sansberro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Klimaszewska.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayala, P.G., Brugnoli, E.A., Luna, C.V. et al. Eucalyptus nitens plant regeneration from seedling explants through direct adventitious shoot bud formation. Trees 33, 1667–1678 (2019). https://doi.org/10.1007/s00468-019-01888-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-019-01888-5

Keywords

Navigation