Skip to main content
Log in

Physiological and molecular responses of Betula platyphylla Suk to salt stress

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Our study found that birch employs different physiological pathways to tolerance salt stress in roots and leaves, and the genes closely correlated with these physiological changes were identified.

Abstract

Birches are fast-growing woody plants that are adapted to adverse environments, and are widely distributed from north Europe to northeast Asia. However, the salt stress tolerance mechanism of birch has little been studied. Here, we investigated the physiological and molecular response of white birch (Betula Platyphylla) to salt stress. Long-term salt stress inhibited photosynthetic activity, and decreased stomatal conductance of birch. Abscisic acid was induced in birch during the early salt stress period, and Ca2+ level was increased slowly but maintained at a higher level for a long time. Under salt conditions, the salt-overly-sensitive pathway was activated in birch roots; reactive oxygen species (ROS) was highly accumulated, and superoxide dismutase is the main ROS scavenger in roots, while peroxidase is the main ROS scavenger in leaves. Proline plays a role in salt tolerance in both roots and leaves; however, soluble sugars and trehalose also have roles in salt stress tolerance, but mainly in leaves. Additionally, the genes that might have essential roles in controlling some of these physiological changes were identified, which represent good candidate genes to characterize the salt tolerance mechanism of birch. This study increased our understanding of the salt tolerance mechanism of birch plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

POD:

Peroxidase

DAB:

3,3′-Diaminobenzidine

NBT:

Nitroblue tetrazolium

MDA:

Malondialdehyde

H2O2 :

Hydrogen Peroxide

TBA:

Thiobarbituric acid

Pn:

Net photosynthetic rate

Tr:

Transpiration rate

Gs:

Stomatal conductance

RT-PCR:

Reverse transcription-polymerase chain reaction

qRT-PCR:

Quantitative reverse transcription-polymerase chain reaction

P5CS:

Delta1-pyrroline-5-carboxylate synthase

CaM:

Calmodulin

SOS:

Salt-overly-sensitive

NHX:

Na+/H+ antiporter

ABA:

Abscisic acid

TPS:

Trehalose-6-phosphate synthase

TPP:

Trehalose-phosphate phosphatase

References

  • Bassil E, Coku A, Blumwald E (2012) Cellular ion homeostasis: emerging roles of intracellular NHX Na+/H+ antiporters in plant growth and development. J Exp Bot 63(16):5727–5740

    Article  CAS  PubMed  Google Scholar 

  • Campo S, Baldrich P, Messeguer J, Lalanne E, Coca M, Segundo BS (2014) Overexpression of a calcium-dependent protein kinase confers salt and drought tolerance in rice by preventing membrane lipid peroxidation. Plant Physiol 165:688–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao WH, Liu J, He XJ (2007) Modulation of ethylene responses affects plant salt-sress responses. Plant Physiol 143:707–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11(2):113–116

    Article  CAS  Google Scholar 

  • Christmann A, Moes D, Himmelbach A, Yang Y, Tang Y, Grill E (2006) Integration of abscisic acid signalling into plant responses. Plant Biol 8(3):314–325

    Article  CAS  PubMed  Google Scholar 

  • Czernicka M, Pławiak J, Muras P (2014) Genetic diversity of F1 and F2 interspecific hybrids between dwarf birch (Betula nana L.) and Himalayan birch (B. utilis var. jacquemontii (Spach) Winkl. ‘Doorenbos’) using RAPD-PCR markers and ploidy analysis. Acta Biochim Pol 61(2):195–199

    PubMed  Google Scholar 

  • Davenport RJ, Muñoz-Mayor A, Jha D, Essah PA, Rus A, Tester M (2007) The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant Cell Environ 30(4):497–507

    Article  CAS  PubMed  Google Scholar 

  • Downton WJS, Loveys BR (1981) Abscisic acid content and osmotic relations of salt-stressed grapevine leaves. Funct Plant Biol 8(5):443–452

    CAS  Google Scholar 

  • Feki K, Quintero FJ, Khoudi H, Leidi EO, Masmoudi K, Pardo JM, Brini F (2014) A constitutively active form of a durum wheat Na+/H+ antiporter SOS1 confers high salt tolerance to transgenic Arabidopsis. Plant Cell Rep 33:277–288

    Article  CAS  PubMed  Google Scholar 

  • Fryer MJ, Oxborough K, Mullineaux PM, Baker NR (2002) Imaging of photo-oxidative stress responses in leaves. J Exp Bot 53:1249–1254

    CAS  PubMed  Google Scholar 

  • Furlow J (1990) The genera of Betulaceae in the southeastern United States. J Arnold Arboretum 71:1–67

    Article  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics. doi:10.1155/2014/701596

    PubMed  PubMed Central  Google Scholar 

  • He T, Cramer GR (1996) Abscisic acid concentrations are correlated with leaf area reductions in two salt-stressed rapid-cycling Brassica species. Plant Soil 179(1):25–33

    Article  CAS  Google Scholar 

  • James RA, Blake C, Byrt CS, Munns R (2011) Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. J Exp Bot 62(8):2939–2947

    Article  CAS  PubMed  Google Scholar 

  • Ji H, Pardo JM, Batelli G, Van Oosten MJ, Bressan RA, Li X (2013) The salt overly sensitive (SOS) pathway: established and emerging roles. Mol Plant 6:275–286

    Article  CAS  PubMed  Google Scholar 

  • Katschnig D, Bliek T, Rozema J, Schat H (2015) Constitutive high-level SOS1 expression and absence of HKT1;1 expression in the salt-accumulating halophyte Salicornia dolichostachya. Plant Sci 234:144–154

    Article  CAS  PubMed  Google Scholar 

  • Kavi Kishor PB, Sreenivasulu N (2014) Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant Cell Environ 37(2):300–311

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Singh P, Sarin NB, Yusuf MA (2014) Histochemical detection of superoxide and H2O2 accumulation in Brassica juncea seedlings. Bio-protocol. doi:10.21769/BioProtoc.1108

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu XH, Sun DQ, Mo YW, Xi JG, Sun G (2010) Effects of post-harvest salicylic acid treatment on fruit quality and anti-oxidant metabolism in pineapple during cold storage. J Hortic Sci Biotechnol 85:454–458

    Article  CAS  Google Scholar 

  • Lunn JE, Delorge I, Figueroa CM, Van Dijck P, Stitt M (2014) Trehalose metabolism in plants. Plant J 79(4):544–567

    Article  CAS  PubMed  Google Scholar 

  • Matsushita N, Matoh T (1991) Characterization of Na+ exclusion mechanisms of salt-tolerant reed plants in comparison with salt-sensitive rice plants. Physiol Plantarum 83:170–176

    Article  CAS  Google Scholar 

  • Møller IS, Gilliham M, Jha D, Mayo GM, Roy SJ, Coates JC, Haseloff J, Tester M (2009) Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis. Plant Cell 21:2163–2178

    Article  PubMed  PubMed Central  Google Scholar 

  • Monihan SM, Magness CA, Yadegari R, Smith SE, Schumaker KS (2016) Arabidopsis CALCINEURIN B-LIKE10 functions independently of the SOS pathway during reproductive development in saline conditions. Plant Physiol 171(1):369–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Quintero FJ, Ohta M, Shi H, Zhu JK, Pardo JM (2002) Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proc Natl Acad Sci USA 99:9061–9066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahnama A, James RA, Poustini K, Munns R (2010) Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Funct Plant Biol 37(3):225–263

    Article  Google Scholar 

  • Scharf B, Clement CC, Zolla V, Perino G, Yan B, Elci SG, Purdue E, Goldring S, Macaluso F, Cobelli N, Vachet RW, Santambrogio L (2014) Molecular analysis of chromium and cobalt-related toxicity. Sci Rep 4(4):5729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schiop ST, Hassan MA, Sestras AF (2015) Identification of salt stress biomarkers in romanian carpathian populations of Picea abies (L.) Karst. PLoS One 10(8):980–981

    Article  Google Scholar 

  • Si J, Zhou T, Bo W, Xu F, Wu R (2014) Genome-wide analysis of salt-responsive and novel microRNAs in Populus euphratica by deep sequencing. BMC Genet. doi:10.1186/1471-2156-15-S1-S6

    Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15(2):89–97

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Yang A, Yin H, Zhang J (2008) Influence of water stress on endogenous hormone contents and cell damage of maize seedlings. J Integr Plant Biol 50(4):427–434

    Article  CAS  PubMed  Google Scholar 

  • Waters S, Gilliham M, Hrmova M (2013) Plant high-affinity potassium (HKT) Transporters involved in salinity tolerance: structural insights to probe differences in ion selectivity. Int J Mol Sci 14(4):7660–7680

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav NS, Shukla PS, Jha A, Agarwal PK, Jha B (2012) The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco. BMC Plant Biol 12(1):7–15

    Article  Google Scholar 

  • Yamaguchi T, Hamamoto S, Uozumi N (2013) Sodium transport system in plant cells. Front Plant Sci 4(410):410

    PubMed  PubMed Central  Google Scholar 

  • Yang CP, Wei HR (2015) Designig microarray and RNA-Seq experiments for greater system biology discovery in modern plant genomics. Mol Plant 8:196–206

    Article  CAS  PubMed  Google Scholar 

  • Yin J, Li C, Zhan Y, Sun H, Gong Y (2016) The response of physiological characteristics, expression of OSC genes, and accumulation of triterpenoids in Betula platyphylla Suk to MeJA and SA treatment. Plant Mol Biol Rep 34:427–439

    Article  CAS  Google Scholar 

  • Zhang Z, Huang RF (2013) Analysis of malondialdehyde, chlorophyll, proline, soluble sugar, and glutathione content in Arabidopsis seedling. Bio-protocol. doi:10.21769/BioProtoc.817

    Google Scholar 

  • Zhang X, Wang L, Meng H, Wen H, Fan Y, Zhao J (2011) Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species. Plant Mol Biol 75:365–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang WX, Chu YG, Su XH (2014) Transcriptome sequencing of transgenic poplar (Populus × euramericana ‘Guaruento’) expressing multiple resistance genes. BMC Genet 15(1):1–17

    Google Scholar 

  • Zhu X, Dunand C, Snedden W, Galaud JP (2015) CaM and CML emergence in the green lineage. Trends Plant Sci 20:483–489

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Project of the culture of the young scientists in scientific innovation in Xinjiang Province (2013711001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yucheng Wang.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Communicated by S. Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mijiti, M., Zhang, Y., Zhang, C. et al. Physiological and molecular responses of Betula platyphylla Suk to salt stress. Trees 31, 1653–1665 (2017). https://doi.org/10.1007/s00468-017-1576-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-017-1576-9

Keywords

Navigation