Skip to main content
Log in

Effects of Brassinolide on Growth, Photosynthetic Rate and Antioxidant Enzyme Activity of Ornamental Gourd under Salt Stress

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Salt stress has an important influence on the growth and development of gourd (Lagenaria siceraria (Molina) Standl.), and it is one of the abiotic factors that inhibit plant growth. As a plant growth regulator, brassinolide has a regulatory effect on plants under salt stress. In this study, “Yayao” gourd was treated with 85 mmol/L NaClstress to study the alleviation effect of different concentrations of brassinolide on ornamental gourd. The results showed that the concentration of brassinolide at 0.208 μmol/L under salt stress significantly increased the net photosynthetic rate, transpiration rate, stomatal conductance and chlorophyll content, regulated fluorescence parameters, and improved plant height, dry and fresh weight and root vigor of gourd seedlings under salt stress. Brassinolide increased soluble sugar content, decreased free proline content, promoted antioxidant enzymes (SOD, APX, CAT) activity, eliminated reactive oxygen species (ROS) damage, reduced malondialdehyde (MDA) accumulation, maintained cell expansion pressure, improved cell-environment osmoregulation, and inhibited membrane lipid peroxidation in gourds. In addition, salt stress increased the content of phenolic compounds, flavonoids, and lignin, and brassinolide further increased the content, which alleviated the damage of salt stress. The above analysis showed that salt stress had a certain effect on the physiological indexes of gourd seedlings, and the appropriate concentration of brassinolide could alleviate the damage of salt stress on gourd seedlings from several aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Yadav, S., Irfan, M., Ahmad, A., and Hayat, S., Causes of salinity and plant manifestations to salt stress: a review, J. Environ. Biol., 2011, vol. 32, p. 667.

    PubMed  Google Scholar 

  2. Yakup, Z., Tiyip, T., Nurmemet, I., Sawut, M., Abliz, A., and Abdujappar, A., Monitoring of soil salinization in yutian oasis based on target polarimetric decomposition method and palsar radar data, Laser & Optoelectronics Progress, 2017, vol. 54, p. 294. https://doi.org/10.3788/LOP54.062803

    Article  Google Scholar 

  3. Jiang, H., Rusuli, Y., Kadeer, R., and Adilai, W., Evaluation and analysis of soil salinization in the arid zones based on neural network model, Geo-Inf., 2017, vol. 19, p. 983. https://doi.org/10.3724/SP.J.1047.2017.00983

    Article  Google Scholar 

  4. Allbed, A., Kumar, L., and Aldakheel, Y.Y., Assessing soil salinity using soil salinity and vegetation indices derived from ikonos high-spatial resolution imageries: applications in a date palm dominated region, Geoderma, 2014, vol. 7, p. 230. https://doi.org/10.1016/j.geoderma.2014.03.025

    Article  Google Scholar 

  5. Grove, M.D., Spencer, G.F., Rohwedder, W.K., Mandava, N., and Cook, J., Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen, Nature, 1979, vol. 281, p. 216. https://doi.org/10.1038/281216a0

    Article  CAS  Google Scholar 

  6. Baghel, M., Nagaraja, A., and Srivastav, M., Pleiotropic influences of brassinosteroids on fruit crops: a review, J. Plant Growth Regul., 2019, vol. 87, p. 375. https://doi.org/10.1007/s10725-018-0471-8

    Article  CAS  Google Scholar 

  7. Li, M., Zhang, Y., Xu, X., Chen, Y., Chu, J., and Yao, X., The combined treatments of brassinolide and zeaxanthin better alleviate oxidative damage and improve hypocotyl length, biomass, and the quality of radish sprouts stored at low temperature, Food Chem., 2022, vol. X 15, p. 100394. https://doi.org/10.1016/j.fochx.2022.100394

    Article  CAS  Google Scholar 

  8. Kanwar, M.K., Bakshi, P., Sharma, P., Kour, J., Singh, A.D., Dhiman, S., Ibhrahim, M., Mir, B.A., Ahammed, G.J., and Zhou, J., Brassinosteroids in plant reproductive development, Brassinosteroids in Plant Developmental Biology and Stress Tolerance, Academic Press, 2022, p. 105. https://doi.org/10.1016/B978-0-12-813227-2.00009-6

    Book  Google Scholar 

  9. Hong, J., Sung, J., and Ryu, H., Brassinosteroids-mediated regulation of ABI3 is involved in high temperature induced early flowering in plants. J. Plant Biotechnol., 2018, vol. 45, p. 83e89. https://doi.org/10.5010/JPB.2018.45.2.083

  10. Sophie, D. D., Brian, F., Loïc, P., Price, A., Tuberosa, R., and Draye, X., Root system architecture: opportunities and constraints for genetic improvement of crops, Trends Plant Sci, 2007, vol. 12, p. 474. https://doi.org/10.1016/j.tplants.2007.08.012

    Article  CAS  Google Scholar 

  11. Li, Q.F., Lu, J., Yu, J.W., Zhang, C.Q., He, J.X., and Liu, Q.Q., The brassinosteroid-regulated transcription factors BZR1/BES1 function as a coordinator in multi signal-regulated plant growth, Biochim. Biophys. Acta (BBA): Gene Regul. Mech., 2018, vol. 1861, p. 561e571. https://doi.org/10.1016/j.bbagrm.2018.04.003

  12. Zaharah, S.S., Singh, Z., Symons, G.M., and Reid, J.B., Role of brassinosteroids, ethylene, abscisic acid, and indole-3-acetic acid in mango fruit ripening, J. Plant Growth Regul., 2012, vol. 31, p. 363e372. https://doi.org/10.1007/s00344-011-9245-5

  13. Ayub, R.A., Reis, L., Bosetto, L., Lopes, P. Z., Galvo, C. W., and Etto, R. M., Brassinosteroid plays a role on pink stage for receptor and transcription factors involved in strawberry fruit ripening, J. Plant Growth Regul., 2018, vol. 84, p. 159e167. https://doi.org/10.1007/s10725-017-0329-5

  14. Huang, H., Wang, D., Belwal, T., Dong, L., Lu, L., Zou, Y., and Luo, Z., A novel W/O/W double emulsion co-delivering brassinolide and cinnamon essential oil delayed the senescence of broccoli via regulating chlorophyll degradation and energy metabolism, Food Chem., 2021, vol. 356, p. 129704. https://doi.org/10.1016/j.foodchem.2021.129704

    Article  CAS  PubMed  Google Scholar 

  15. Dehghan, M., Balouchi, H., Yadavi, A., and Zare, E., Improve wheat (Triticum aestivum) performance by brassinolide application under different irrigation regimes, S. Afr. J. Bot., 2020, vol. 130, p. 259. https://doi.org/10.1016/j.sajb.2020.01.013

    Article  CAS  Google Scholar 

  16. Mashilo, J., Odindo, A.O., Shimelis, H.A., Musenge, P., Tesfay, S.Z., and Magwaza, LS., Drought tolerance of selected bottle gourd [Lagenaria siceraria (Molina) Standl.] landraces assessed by leaf gas exchange and photosynthetic efficiency, Plant Physiol. Biochem., 2017, vol. 120, p. 75. https://doi.org/10.1016/j.plaphy.2017.09.022

    Article  CAS  PubMed  Google Scholar 

  17. Attar, U.A. and Ghane, S.G., In vitro antioxidant, antidiabetic, antiacetylcholine esterase, anticancer activities and RP-HPLC analysis of phenolics from the wild bottle gourd (Lagenaria siceraria (Molina) Standl.), S. Afr. J. Bot., 2019, vol. 125, p. 360. https://doi.org/10.1016/j.sajb.2018.09.006

    Article  CAS  Google Scholar 

  18. Omokhua-Uyi, A.G. and Van Staden, J., Phytomedicinal relevance of South African Cucurbitaceae species and their safety assessment: A review, J. Ethnopharmacol., 2020, vol. 259, p. 112967. https://doi.org/10.1016/j.jep.2020.112967

    Article  CAS  PubMed  Google Scholar 

  19. Liu, L., Xiao, W., Ling, D.M., Gao, D.S., Zhu, Y., and Xi, L., Effect of exogenously applied molybdenum on its absorption and nitrate metabolism in strawberry seedlings, J. Plant Physiol. Biochem., 2017, vol. 115, p. 200. https://doi.org/10.1016/j.plaphy.2017.03.015

    Article  CAS  Google Scholar 

  20. Lin, K.H., Huang, M.Y., Huang, W.D., Hsu, M.H., and Yang, C.M., The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata), Sci. Hortic., 2013, vol. 150, p. 86. https://doi.org/10.1016/j.scienta.2012.10.002

    Article  Google Scholar 

  21. Li, H.S., Principle and Technique of Plant Physiology and Biochemistry Experiment, Beijing: Higher Education Press, 2000.

    Google Scholar 

  22. Wang, X.K., Principles and Techniques of Plant Physiological and Biochemical Experiments, Beijing: Higher Education Press, 2006, 2nd ed.

    Google Scholar 

  23. Cui, H.L., Xie, J.F., Yang, B., Han, Q., Fan, R.J., and Wang, A.A., Effects of Sewage Irrigation and Cadmium Stresses on the Activities of Several Antioxidant Enzymes of Spinach, J. Sci. Technol. Agric. Nat. Resour., 2010, vol. 8, p. 947. https://doi.org/10.4314/ajb.v8i22.66135

    Article  Google Scholar 

  24. Zainudin, M., Hamid, A.A., Anwar, F., Osman, A., and Saari, N., Variation of bioactive compounds and antioxidant activity of carambola (Averrhoa carambola L.) fruit at different ripening stages, Sci.Hortic., 2014, vol. 172, p. 325. https://doi.org/10.1016/j.scienta.2014.04.007

    Article  CAS  Google Scholar 

  25. Dence, C.W., The determination of lignin, Methods in Lignin Chemistry, Lin, S.Y. and Dence, C.W., Eds., Springer: Heidelberg, 1992, p. 33. https://doi.org/10.1007/978-3-642-74065-7_3

    Book  Google Scholar 

  26. Zhang, Y.H., Li, X.Y., Šimůnek, J., Shi, H., Chen, N., and Hu, Q., Optimizing drip irrigation with alternate use of fresh and brackish waters by analyzing salt stress: The experimental and simulation approaches, Soil Tillage Res., 2022, vol. 219, p. 105355. https://doi.org/10.1016/j.still.2022.105355

    Article  Google Scholar 

  27. Liang, Q.Y., Wu, Y.H., Wang, K., Bai, Z.Y., Liu, Q.L., Pan, Y.Z., Zhang, L., and Jiang, B.B., Chrysanthemum WRKY gene DgWRKY5 enhances tolerance to salt stress in transgenic chrysanthemum, Sci. Rep., 2017, vol. 7, p. 1. https://doi.org/10.1038/s41598-017-05170-x

    Article  CAS  Google Scholar 

  28. Pavlovic, I., Pencik, A., Novak, O., Vujcic, V., and Brkanac, S., Short-term salt stress in Brassica rapa seedlings causes alterations in auxin metabolism, Plant Physiol. Biochem., 2018, vol. 125, p. 74. https://doi.org/10.1016/j.plaphy.2018.01.026

    Article  CAS  PubMed  Google Scholar 

  29. Wang, T., Meng, Z.J., and Zhang, J.P., Effects of NaCl stress on the growth and physiological characteristics of Amorpha fruticosa seedlings, Journal of Northwest Forestry University, 2021, vol. 36, p. 25. https://doi.org/10.3969/j.issn.1001-746.2021.01.04

    Article  Google Scholar 

  30. Huang, L., Yang, W.P., and Liu, H.B., Effect of salt stress on seedling growth and physiological characteristics of Bainong 4199, Journal of Henan University of Science and Technology, 2020, vol. 48, p. 1. https://doi.org/10.3969/j.issn.1008-7516.2020.06.001

    Article  Google Scholar 

  31. Bajguz, A. and Hayat, S., Effects of brassinosteroids on the plant responses to environmental stresses, Plant Physiol. Biochem., 2009, vol. 47, p. 1. https://doi.org/10.1016/j.plaphy.2008.10.002

    Article  CAS  PubMed  Google Scholar 

  32. Yu, J.Q., Huang, L.F., Hu, W.H., Zhou, Y.H., Mao, W.H., Ye, S.F., and Nogués, S., A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus, J. Exp. Bot., 2004, vol. 55, p. 1135. https://doi.org/10.1093/jxb/erh124

    Article  CAS  PubMed  Google Scholar 

  33. Yuan, L., Yuan, Y., Du, J., Sun, J., and Guo, S., Effects of 24-epibrassinolide on nitrogen metabolism in cucumber seedlings under Ca(NO3)2 stress, Plant Physiol. Biochem., 2012, vol. 61, p. 29. https://doi.org/10.1016/j.plaphy.2012.09.004

    Article  CAS  PubMed  Google Scholar 

  34. Castle, J., Montoya, T., and Bishop, G.J., Selected Physiological Responses of Brassinosteroids: a Historical Approach, Brassinosteroids, Hayat, S. and Ahmad, A., Eds., Dordrecht: Springer, 2003, p. 45. https://doi.org/10.1007/978-94-017-0948-4_2

    Book  Google Scholar 

  35. Kalinich, J.F., Mandava, N.B., and Todhunter, J.A., Relationship of nucleic acid metabolism to brassinolide-induced responses in beans, J. Plant Physiol., 1985, vol. 120, p. 207. https://doi.org/10.1016/S0176-1617(85)80107-3

    Article  CAS  Google Scholar 

  36. Honnerová, J., Rothová, O., Holá, D., Kočová, M., Kohout, L., and Kvasnica, M., The exogenous application of brassinosteroids to Zea mays (L.) stressed by long-term chilling does not affect the activities of photosystem 1 or 2, J. Plant Growth Regul., 2010, vol. 29, p. 500. https://doi.org/10.1007/s00344-010-9153-0

    Article  CAS  Google Scholar 

  37. Tanveer, M., Shahzad, B., Sharma, A., Biju, S., and Bhardwaj, R., 24-Epibrassinolide; an active brassinolide and its role in salt stress tolerance in plants: A review, Plant Physiol. Biochem., 2018, vol. 130, p. 69. https://doi.org/10.1016/j.plaphy.2018.06.035

    Article  CAS  PubMed  Google Scholar 

  38. Khalid, A. and Aftab, F., Effect of exogenous application of 24-epibrassinolide on growth, protein contents, and antioxidant enzyme activities of in vitro-grown Solanum tuberosum L. under salt stress. In Vitro Cell. Dev. Biol.: Plant, 2016, vol. 52, p. 1. https://doi.org/10.1007/s11627-015-9745-2

    Article  CAS  Google Scholar 

  39. Karlidag, H., Yildirim, E., and Turan, M., Role of 24‑epibrassinolide in mitigating the adverse effects of salt stress on stomatal conductance, membrane permeability, and leaf water content, ionic composition in salt stressed strawberry (Fragaria x ananassa), Sci. Hortic., 2011, vol. 130, p. 133. https://doi.org/10.1016/j.scienta.2011.06.025

    Article  CAS  Google Scholar 

  40. Ashraf, M., Akram, N., Arteca, R., and Foolad, M.R., The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance, Crit. Rev. Plant Sci., 2010, vol. 29, p. 162. https://doi.org/10.1080/07352689.2010.483580

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Natural Science Fund of Shandong Provi-nce (ZR2020MC031), The Open Project of Liaocheng Universtiy Landscape Architecture Discipline (no. 319462212), Liaocheng University Student Innovation Project (CXCY2023268).

Author information

Authors and Affiliations

Authors

Contributions

Hongmei MU conceives and conceptualizes manuscripts, and visualizes and carefully supervises works and manuscripts; Fei Liuand Ju Yangco-wrote the first draft, and they are co-first authors. Xiqi Zhang and Xingyu Zhang conducts experiments and analyzes data. Xueru Li and Yingying Wen contributed to the review. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to H. Mu.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving animals or human participants as objects of research.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Abbreviations: Pn—net photosynthetic rate; E—transpiration rate; gs—stomatal conductance, Ci—intercellular CO2 concentration; F0—minimal fluorescence; DIo/RC—heat dissipation energy; Fv/Fm—maximum photosynthetic efficiency; Fm—maximum fluorescence; PI abs—Photochemical performance index; psi(Eo)—rate of electron transfer; SOD—superoxide dismutase; APX—ascorbate peroxidase; CAT—catalase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Yang, J., Mu, H. et al. Effects of Brassinolide on Growth, Photosynthetic Rate and Antioxidant Enzyme Activity of Ornamental Gourd under Salt Stress. Russ J Plant Physiol 70, 137 (2023). https://doi.org/10.1134/S1021443722603202

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722603202

Keywords:

Navigation