Intra-annual stem increment patterns and climatic responses in five tree species from an Ecuadorian tropical dry forest

Abstract

Key message

Intra-annual increment patterns and wood production are coupled with rainfall seasonality in five tree species of a Tumbesian tropical dry forest. However, climatic responses show variation among species.

Abstract

In many tropical dry forests, information on radial-growth rates and phenology of wood formation is still lacking. However, such information is needed to better manage these forests, which have been severely disturbed by anthropogenic use and are also threatened by climate warming. To cover this research gap, we evaluated intra-annual variations in stem diameter and assessed cambial growth dynamics in five tree species of a Tumbesian tropical dry forest located in southern Ecuador. Using data from band dendrometers over a 5-year period, we modeled seasonal variations in stem increments through generalized additive mixed models. Monthly radial increments and annual growth rates were also correlated with monthly climatic variables (mean, maximum and minimum temperature, and total rainfall). Stem increments and xylem growth were clearly coupled with rainfall seasonality, although temperature effects were also detected. Interestingly, annual growth in all species did not respond similarly to climate, despite having similar growth rates and intra-annual growth patterns. At the inter-annual scale, climate effects were related to temperature and rainfall, emphasizing the relevance for tree growth of climatic conditions in standard years between “El Niño” events. Under a future scenario of climate warming, these contrasting growth responses to climate might imply changes in competitive dominance among coexisting species of tropical dry forests.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aguirre Z, Kvist LP (2005) Composición florística y estado de conservación de los bosques secos del suroccidente del Ecuador. Lyonia 8:41–67.

    Google Scholar 

  2. Borchert R (1994) Soil and stem water storage determine phenology and distribution of tropical dry forest trees. Ecology 75:1437–1449. doi:10.2307/1937467

    Article  Google Scholar 

  3. Borchert R (1999) Climatic periodicity, phenology, and cambium activity in tropical dry forest trees. IAWA J 20:239–247

    Article  Google Scholar 

  4. Borchert R, Robertson K, Schwartz MD, Williams-Linera G (2005) Phenology of temperate trees in tropical climates. Int J Biometerol 50:57–65. doi:10.1007/s00484-005-0261-7

    Article  Google Scholar 

  5. Bräuning A, Volland-Voigt F, Burchardt I, Ganzhi O, Nauss T, Peters T (2009) Climatic control of radial growth of Cedrela montana in a humid mountain rainforest in Southern Ecuador. Erdkunde 63:337–345. doi:10.3112/erdkunde.2009.04.04

    Article  Google Scholar 

  6. Brienen RJW, Zuidema PA (2005) Relating tree growth to rainfall in Bolivian rain forests: a test for six species using tree ring analysis. Oecologia 146:1–12. doi:10.1007/s00442-005-0160-y

    Article  PubMed  Google Scholar 

  7. Brienen RJW, Zuidema PA (2007) Incorporating persistent tree growth differences increases estimates of tropical timber yield. Front Ecol Environ 5:302–306. doi:10.1890/1540-9295(2007)5[302:RCPTGD]2.0.CO;2

    Article  Google Scholar 

  8. Brienen RJW, Zuidema PA, Martínez-Ramos M (2010) Attaining the canopy in dry and moist tropical forests: strong differences in tree growth trajectories reflect variation in growing conditions. Oecologia 163:485–496. doi:10.1007/s00442-009-1540-5

    Article  PubMed  Google Scholar 

  9. Brienen RJW, Phillips OL, Feldpausch TR et al (2015) Long-term decline of the Amazon carbon sink. Nature 519:344–348. doi:10.1038/nature14283

    CAS  Article  PubMed  Google Scholar 

  10. Bunn AG (2008) A dendrochronology program library in R (dplR). Dendrochronologia 26:115–124. doi:10.1016/j.dendro.2008.01.002

    Article  Google Scholar 

  11. Bunn A, Korpela M, Biondi F, Campelo F, Mérian P, Qeadan F, Zang C (2016) dplR: Dendrochronology Program Library in R. R package version 1.6.4. https://CRAN.R-project.org/package=dplR

  12. Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366. doi:10.1111/j.1461-0248.2009.01285.x

    Article  PubMed  Google Scholar 

  13. Clark DB, Clark DA, Oberbauer SF (2010) Annual wood production in a tropical rain forest in NE Costa Rica linked to climatic variation but not to increasing CO2. Glob Chang Biol 16:747–759. doi:10.1111/j.1365-2486.2009.02004.x

    Article  Google Scholar 

  14. Daubenmire R (1972) Phenology and other characteristics of tropical semi-deciduous forest in north-western Costa Rica. J Ecol 60:147–160. doi:10.2307/2258048

    Article  Google Scholar 

  15. Devall MS, Parresol BR, Wright SJ (1995) Dendroecological analysis of Cordia alliodora, Pseudobombax septenatum and Annona spraguei in Central Panama. IAWA J 16:411–424

    Article  Google Scholar 

  16. Dodson CH, Gentry AH (1991) Biological extinction in western Ecuador. Ann Mo Bot Gard 78:273–295. doi:10.2307/2399563

    Article  Google Scholar 

  17. Doughty CE, Goulden ML (2008) Are tropical forests near a high temperature threshold? J Geophys Res: Biogeosci 113:G00B07. doi:10.1029/2007JG000632

    Google Scholar 

  18. Enquist BJ, Leffler J (2001) Long-term tree ring chronologies from sympatric tropical dry-forest trees: individualistic responses to climatic variation. J Trop Ecol 17:41–60. doi:10.1017/S0266467401001031

    Article  Google Scholar 

  19. Espinosa CI, Cabrera O (2011) What factors affect diversity and species composition of endangered Tumbesian dry forests in Southern Ecuador? Biotropica 43:15–22. doi:10.1111/j.1744-7429.2010.00665.x

    Article  Google Scholar 

  20. Gentry A (1977) Endangered plant species and habitats of Ecuador and Amazonian Peru. In: Prance G, Ellias T (eds). Extinction is forever. Botanical Garden, New York

    Google Scholar 

  21. Gliniars R, Becker GS, Braun D, Dalitz H (2013) Monthly stem increment in relation to climatic variables during 7 years in an East African rainforest. Trees 27:1129–1138. doi:10.1007/s00468-013-0863-3

    Article  Google Scholar 

  22. Gutiérrez E, Campelo F, Camarero JJ, Ribas M, Muntán E, Nabais C, Freitas H (2011) Climate controls act at different scales on the seasonal pattern of Quercus ilex L. stem radial increments in NE Spain. Trees 25:637–646. doi:10.1007/s00468-011-0540-3

    Article  Google Scholar 

  23. Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int J Climatol 34:623–642. doi:10.1002/joc.3711

    Article  Google Scholar 

  24. Hocquenghem AM (1998) Para vencer la muerte. Piura y Tumbes. Raíces en el bosque seco y en la selva alta—Horizontes en el Pacífico y en la Amazonia. CNRS–IFEA–INCAH, Lima

    Google Scholar 

  25. Holmgren M, Scheffer M, Ezcurra E, Gutiérrez JR, Mohren GMJ (2001) El Niño effects on the dynamics of terrestrial ecosystems. Trends Ecol Evol 16:89–94. doi:10.1016/S0169-5347(00)02052-8

    CAS  Article  PubMed  Google Scholar 

  26. Janzen DH (1988) Management of habitat fragments in a tropical dry forest: growth. Ann Mo Bot Gard 75:105–116. doi:10.2307/2399468

    Article  Google Scholar 

  27. Krepkowski J, Bräuning A, Gebrekirstos A, Strobl S (2011) Cambial growth dynamics and climatic control of different tree life forms in tropical mountain forest in Ethiopia. Trees 25:59–70. doi:10.1007/s00468-010-0460-7

    Article  Google Scholar 

  28. Linares-Palomino R, Kvist LP, Aguirre-Mendoza Z, Gonzales-Inca C (2010) Diversity and endemism of woody plant species in the Equatorial Pacific seasonally dry forests. Biodivers Conserv 19:169–185. doi:10.1007/s10531-009-9713-4

    Article  Google Scholar 

  29. Locosselli GM, Schöngart J, Ceccantini G (2016) Climate/growth relations and teleconnections for a Hymenaea courbaril (Leguminosae) population inhabiting the dry forest on karst. Trees 30:1127–1136. doi:10.1007/s00468-015-1351-8

    Article  Google Scholar 

  30. López L, Villalba R (2016) Reliable estimates of radial growth for eight tropical species based on wood anatomical patterns. J Trop For Sci 28:139–152

    Google Scholar 

  31. Martínez Pastur G, Lencinas MV, Cellini JM, Mundo I (2007) Diameter growth: can live trees decrease? Forestry 80:83–88. doi:10.1093/forestry/cpl047

    Article  Google Scholar 

  32. Mendivelso HA, Camarero JJ, Royo Obregón O, Gutiérrez E, Toledo M (2013) Differential growth responses to water balance of coexisting deciduous tree species are linked to wood density in a Bolivian tropical dry forest. PLoS One 8:e73855. doi:10.1371/journal.pone.0073855

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Mendivelso HA, Camarero JJ, Gutierrez E, Zuidema PA (2014) Time-dependent effects of climate and drought on tree growth in a Neotropical dry forest: Short-term tolerance vs. long-term sensitivity. Agric For Meteorol 188:13–23. doi:10.1016/j.agrformet.2013.12.010

    Article  Google Scholar 

  34. Mendivelso HA, Camarero JJ, Gutiérrez E, Castaño-Naranjo A (2016) Climate influences on leaf phenology, xylogenesis and radial stem changes at hourly to monthly scales in two tropical dry forests. Agric For Meteorol 216:20–36. doi:10.1016/j.agrformet.2015.09.014

    Article  Google Scholar 

  35. Miles L, Newton AC, DeFries RS, Ravilious C, May I, Blyth S, Kapos V, Gordon JE (2006) A global overview of the conservation status of tropical dry forests. J Biogeogr 33:491–505

    Article  Google Scholar 

  36. Morán-Tejeda E, Bazo J, López-Moreno JI, Aguilar E, Azorín-Molina C, Sánchez-Lorenzo A, Martínez R, Nieto JJ, Mejía R, Martín-Hernández N, Vicente-Serrano SM (2016) Climate trends and variability in Ecuador (1966–2011). Int J Climatol 36:3839–3855. doi:10.1001/joc.4597

    Article  Google Scholar 

  37. Murphy PG, Lugo AE (1986) Ecology of tropical dry forest. Annu Rev Ecol Syst 17:67–88. doi:10.1146/annurev.es.17.110186.000435

    Article  Google Scholar 

  38. Obeso JR (2002) The cost of reproduction in plants. New Phytol 155:321–348. doi:10.1046/j.1469-8137.2002.00477.x

    Article  Google Scholar 

  39. Paredes-Villanueva K, López L, Navarro-Cerrillo RM (2016) Regional chronologies of Cedrela fissilis and Cedrela angustifolia in three forest types and their relation to climate. Trees 30:1581–1593. doi:10.1007/s00468-016-1391-8

    Article  Google Scholar 

  40. Peralvo M, Sierra R, Young KR et al (2007) Identification of biodiversity conservation priorities using predictive modeling: an application for the Equatorial Pacific region of South America. Biodivers Conserv 16:2649–2675. doi:10.1007/s10531-006-9077-y

    Article  Google Scholar 

  41. Phillips OL, Aragão LEOC, Lewis SL et al (2009) Drought sensitivity of the Amazon Rainforest. Science 323:1344–1347. doi:10.1126/science.1164033

    CAS  Article  PubMed  Google Scholar 

  42. Pineda-García F, Paz H, Meinzer FC (2013) Drought resistance in early and late secondary successional species from a tropical dry forest: the interplay between xylem resistance to embolism, sapwood water storage and leaf shedding. Plant Cell Environ 36:405–418. doi:10.1111/j.1365-3040.2012.02582.x

    Article  PubMed  Google Scholar 

  43. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2016) nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-126. http://CRAN.R-project.org/package=nlme.

  44. Pucha-Cofrep D, Peters T, Bräuning A (2015) Wet season precipitation during the past century reconstructed from tree-rings of a tropical dry forest in Southern Ecuador. Glob Planet Chang 133:65–78. doi:10.1016/j.gloplacha.2015.08.003

  45. Pumijumnong N, Buajan S (2013) Seasonal cambial activity of five tropical tree species in central Thailand. Trees 27:409–417. doi:10.1007/s00468-012-0794-4

    Article  Google Scholar 

  46. Putz FE, Zuidema PA, Synnott T, Peña-Claros M, Pinard MA, Sheil D (2012) Sustaining conservation values in selectively logged tropical forests: The attained and the attainable. Conserv Lett 5:296–303. doi:10.1111/j.1755-263X.2012.00242.x

    Article  Google Scholar 

  47. R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

  48. Rodríguez R, Mabres A, Luckman B, Evans M, Masiokas M, Ektvedt TM (2005) “El Niño” events recorded in dry-forest species of the lowlands of northwest Peru. Dendrochronologia 22:181–186. doi:10.1016/j.dendro.2005.05.002

    Article  Google Scholar 

  49. Rossi S, Deslauriers A, Anfodillo T (2006) Assessment of cambial activity and xylogenesis by microsampling tree species: an example at the Alpine timberline. IAWA J 27:383–394

    Article  Google Scholar 

  50. Rowland L, Malhi Y, Silva-Espejo JE, Farfán-Amézquita F, Halladay K, Doughty CE, Meir P, Phillips OL (2014) The sensitivity of wood production to seasonal and interannual variations in climate in a lowland Amazonian rainforest. Oecologia 174:295–306. doi:10.1007/s00442-013-2766-9

    Article  PubMed  Google Scholar 

  51. Rozendaal DMA, Zuidema PA (2011) Dendroecology in the tropics: a review. Trees 25:3–16. doi:10.1007/s00468-010-0480-3

    Article  Google Scholar 

  52. Schöngart J, Piedade MTF, Ludwigshausen S, Horna V, Worbes M (2002) Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests. J Trop Ecol 18:581–597. doi:10.1017/S0266467402002389

    Article  Google Scholar 

  53. Shimamoto CY, Botosso PC, Amano E, Marques MCM (2016) Stem growth rhythms in trees of a tropical rainforest in Southern Brazil. Trees 30:99–111. doi:10.1007/s00468-015-1279-z

    Article  Google Scholar 

  54. Sierra R (1999) Propuesta Preliminar de un Sistema de Clasificación de Vegetación para el Ecuador Continental. Proyecto INEFAN/GEF-BIRF y EcoCiencia, Quito

    Google Scholar 

  55. Spannl S, Volland F, Pucha D, Peters T, Cueva E, Bräuning A (2016) Climate variability, tree increment patterns and ENSO-related carbon sequestration reduction of the tropical dry forest species Loxopterygium huasango of Southern Ecuador. Trees 30:1245–1258. doi:10.1007/s00468-016-1362-0

    Article  Google Scholar 

  56. Suzuki M, Yoda K, Suzuki H (1996) Phenological comparison of the onset of vessel formation between ring-porous and diffuse-porous deciduous trees in a Japanese temperate forest. IAWA J 77:431–444

    Article  Google Scholar 

  57. Tapia-Armijos MF, Homeier J, Espinosa CI, Leuschner C, De la Cruz M (2015) Deforestation and forest fragmentation in south Ecuador since the 1970s–losing a hotspot of biodiversity. PLoS One 10:e0133701

    Article  PubMed  PubMed Central  Google Scholar 

  58. Volland-Voigt F, Bräuning A, Ganzhi O, Peters T, Maza H (2011) Radial stem variations of Tabebuia chrysantha (Bignoniaceae) in different tropical forest ecosystems of southern Ecuador. Trees 25:39–48. doi:10.1007/s00468-010-0461-6

    Article  Google Scholar 

  59. Wagner F, Rossi V, Aubry-Kientz M, Bonal D, Dalitz H, Gliniars R, Stahl C, Trabucco A, Hèrault B (2014) Pan-tropical analysis of climate effects on seasonal tree growth. PLoS One 9:e92337. doi:10.1371/journal.pone.0092337

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wood SN (2006) Generalized additive models: an introduction with R. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  61. Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc B 73:3–36. doi:10.1111/j.1467-9868.2010.00749.x

    Article  Google Scholar 

  62. Worbes M (1995) How to measure growth dynamics in tropical trees –a review. IAWA J 16:337–351

    Article  Google Scholar 

  63. Worbes M (1999) Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela. J Ecol 87:391–403. doi:10.1046/j.1365-2745.1999.00361.x

    Article  Google Scholar 

  64. Worbes M (2002) One hundred years of tree-ring research in the tropics – a brief history and an outlook to future challenges. Dendrochronologia 20:217–231. doi:10.1078/1125-7865-00018

    Article  Google Scholar 

  65. Worbes M, Staschel R, Roloff A., Junk WJ (2003) Tree ring analysis reveals age structure, dynamics and wood production of a natural forest stand in Cameroon. For Ecol Manage 173:105–123. doi:10.1016/S0378-1127(01)00814-3

    Article  Google Scholar 

  66. Zuur AF, Ieno EN, Walker N, Saveliev A, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Google Scholar 

  67. Zweifel R, Zeugin F, Zimmermann L, Newbery DM (2006) Intraannual radial growth and water relations of trees -implications towards a growth mechanism. J Exp Bot 57:1445–1459. doi:10.1093/jxb/erj125

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

JJC acknowledges the support of Project “Explorando si la diversidad funcional y estructural de los bosques confiere resistencia y resiliencia a la sequía: implicaciones para la adaptación al cambio climático” (Ministerio de Economía y Competitividad, CGL2015-69186-C2-1-R). CIE acknowledges the support of projects “Análisis de la multifuncionalidad de los ecosistemas secos de Ecuador como herramienta para determinar el estado de conservación y los servicios ambientales” and “Respuestas de los ecosistemas secos a un fenómeno extremo de ENSO” funded by Universidad Técnica Particular de Loja. Suggestions of two anonymous referees increased the quality of the manuscript. We acknowledge Angel Gusmán and Jorge Armijos for their help during the field work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ana I. García-Cervigón.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by A. Braeuning.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

García-Cervigón, A.I., Camarero, J.J. & Espinosa, C.I. Intra-annual stem increment patterns and climatic responses in five tree species from an Ecuadorian tropical dry forest. Trees 31, 1057–1067 (2017). https://doi.org/10.1007/s00468-017-1530-x

Download citation

Keywords

  • Band dendrometers
  • Climatic response
  • Leaf phenology
  • Microcores
  • Radial-increment patterns
  • Xylem growth