Skip to main content

Advertisement

Log in

The sensitivity of wood production to seasonal and interannual variations in climate in a lowland Amazonian rainforest

  • Ecosystem ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Understanding climatic controls on tropical forest productivity is key to developing more reliable models for predicting how tropical biomes may respond to climate change. Currently there is no consensus on which factors control seasonal changes in tropical forest tree growth. This study reports the first comprehensive plot-level description of the seasonality of growth in a Peruvian tropical forest. We test whether seasonal and interannual variations in climate are correlated with changes in biomass increment, and whether such relationships differ among trees with different functional traits. We found that biomass increments, measured every 3 months on the two plots, were reduced by between 40 and 55 % in the peak dry season (July–September) relative to peak wet season (January–March). The seasonal patterns of biomass accumulation are significantly (p < 0.01) associated with seasonal patterns of rainfall and soil water content; however, this may reflect a synchrony of seasonal cycles rather than direct physiological controls on tree growth rates. The strength of the growth seasonality response among trees is significantly correlated to functional traits: consistent with a hypothesised trade-off between maximum potential growth rate and hydraulic safety, tall and fast-growing trees with broad stems had the most strongly seasonal biomass accumulation, suggesting that they are more productive in the wet season, but more vulnerable to water limitation in the dry season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson LO et al (2009) Influence of landscape heterogeneity on spatial patterns of wood productivity, wood specific density and above ground biomass in Amazonia. Biogeosciences 6:1883–1902

    Article  Google Scholar 

  • Aragão LEOC, Malhi Y, Roman-Cuesta RM, Saatchi S, Anderson LO, Shimabukuro YE (2007) Spatial patterns and fire response of recent Amazonian droughts. Geophys Res Lett 34

  • Aragão LEOC et al (2009) Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils. Biogeosciences 6:2759–2778

    Article  Google Scholar 

  • Baker TR, Burslem DFRP, Swaine MD (2003a) Associations between tree growth, soil fertility and water availability at local and regional scales in Ghanaian tropical rain forest. J Trop Ecol 19:109–125

    Google Scholar 

  • Baker TR, Swaine MD, Burslem DFRP (2003b) Variation in tropical forest growth rates: combined effects of functional group composition and resource availability. Perspect Plant Ecol Evol Syst 6:21–36

    Article  Google Scholar 

  • Baker TR et al (2004) Variation in wood density determines spatial patterns in Amazonian forest biomass. Glob Chang Biol 10:545–562

    Article  Google Scholar 

  • Baraloto C, Bonal D, Goldberg DE (2006) Differential seedling growth response to soil resource availability among nine Neotropical tree species. J Trop Ecol 22:487

    Article  Google Scholar 

  • Beer C et al (2010) Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329:834–838

    Article  CAS  PubMed  Google Scholar 

  • Bonal D et al (2008) Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana. Glob Chang Biol 14:1917–1933

    Article  Google Scholar 

  • Brienen RJW, Zuidema PA (2005) Relating tree growth to rainfall in Bolivian rain forests: a test for six species using tree ring analysis. Oecologia 146:1–12

    Article  PubMed  Google Scholar 

  • Bucci SJ, Goldstein G, Meinzer FC, Scholz FG, Franco AC, Bustamante M (2004) Functional convergence in hydraulic architecture and water relations of tropical savanna trees: from leaf to whole plant. Tree Physiol 24:891–899

    Article  CAS  PubMed  Google Scholar 

  • Carswell FE et al (2002) Seasonality in CO2 and H2O flux at an eastern Amazonian rain forest. J Geophys Res Atmos 107:8076

    Google Scholar 

  • Chaturvedi RK, Raghubanshi AS, Singh JS (2011) Leaf attributes and tree growth in a tropical dry forest. J Veg Sci 22:917–931

    Article  Google Scholar 

  • Chave J et al (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99

    Article  CAS  PubMed  Google Scholar 

  • Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366

    Article  PubMed  Google Scholar 

  • Clark DA, Clark DB (1992) Life-history diversity of canopy and emergent trees in a Neotropical rain-forest. Ecol Monogr 62:315–344

    Article  Google Scholar 

  • Clark DA, Clark DB (1994) Climate-induced annual variation in canopy tree growth in a Costa-Rican tropical rain-forest. J Ecol 82:865–872

    Article  Google Scholar 

  • Clark DA, Clark DB (2001) Getting to the canopy: tree height growth in a Neotropical rain forest. Ecology 82:1460–1472

    Article  Google Scholar 

  • Clark DA, Piper SC, Keeling CD, Clark DB (2003) Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984–2000. Proc Natl Acad Sci USA 100:5852–5857

    Article  CAS  PubMed  Google Scholar 

  • Clark DB, Clark DA, Oberbauer SF (2010) Annual wood production in a tropical rain forest in NE Costa Rica linked to climatic variation but not to increasing CO2. Glob Chang Biol 16:747–759

    Article  Google Scholar 

  • da Costa AC et al (2010) Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest. New Phytol 187:579–591

    Article  PubMed  Google Scholar 

  • da Silva RP, dos Santos J, Tribuzy ES, Chambers JQ, Nakamura S, Higuchi N (2002) Diameter increment and growth patterns for individual tree growing in Central Amazon, Brazil. For Ecol Manage 166:295–301

    Article  Google Scholar 

  • Delbart N, Ciais P, Chave J, Viovy N, Malhi Y, Le Toan T (2010) Mortality as a key driver of the spatial distribution of aboveground biomass in Amazonian forest: results from a dynamic vegetation model. Biogeosciences 7:3027–3039

    Article  Google Scholar 

  • Dunisch O, Montoia VR, Bauch J (2003) Dendroecological investigations on Swietenia macrophylla King and Cedrela odorata L. (Meliaceae) in the central Amazon. Trees-Struct Funct 17:244–250

    Google Scholar 

  • Engelbrecht BMJ et al (2007) Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447:80–82

    Article  CAS  PubMed  Google Scholar 

  • Fan Z-X, Zhang S-B, Hao G-Y, Ferry Slik JW, Cao K-F (2012) Hydraulic conductivity traits predict growth rates and adult stature of 40 Asian tropical tree species better than wood density. J Ecol 100:732–741

    Article  Google Scholar 

  • Feeley KJ, Joseph Wright S, Nur Supardi MN, Kassim AR, Davies SJ (2007) Decelerating growth in tropical forest trees. Ecol Lett 10:461–469

    Article  PubMed  Google Scholar 

  • Feldpausch TR et al (2011) Height-diameter allometry of tropical forest trees. Biogeosciences 8:1081–1106

    Article  Google Scholar 

  • Fisher JB et al (2009) The land-atmosphere water flux in the tropics. Glob Chang Biol 15:2694–2714

    Article  Google Scholar 

  • Fyllas NM, Quesada CA, Lloyd J (2012) Deriving plant functional types for Amazonian forests for use in vegetation dynamics models. Perspect Plant Ecol Evol Syst 14:97–110

    Article  Google Scholar 

  • Galbraith D et al (2010) Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change. New Phytol 187:647–665

    Article  PubMed  Google Scholar 

  • Good P, Jones C, Lowe J, Betts R, Booth B, Huntingford C (2011) Quantifying environmental drivers of future tropical forest extent. J Clim 24:1337–1349

    Article  Google Scholar 

  • Hacke UG, Sperry JS, Wheeler JK, Castro L (2006) Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol 26:689–701

    Article  PubMed  Google Scholar 

  • Hao GY et al (2008) Stem and leaf hydraulics of congeneric tree species from adjacent tropical savanna and forest ecosystems. Oecologia 155:405–415

    Article  PubMed  Google Scholar 

  • Hoorn C et al (2010) Amazonia through time: andean uplift, climate change, landscape evolution, and biodiversity. Science 330:927–931

    Article  CAS  PubMed  Google Scholar 

  • Hutyra LR et al (2007) Seasonal controls on the exchange of carbon and water in an Amazonian rain forest. J Geophys Res 112:G03088

    Google Scholar 

  • Iida Y et al (2012) Wood density explains architectural differentiation across 145 co-occurring tropical tree species. Funct Ecol 26:274–282

    Article  Google Scholar 

  • Keeland BD, Sharitz RR (1993) Accuracy of tree growth measurements using dendrometer bands. Can J For Res-Rev Can Rech For 23:2454–2457

    Article  Google Scholar 

  • Keeling HC, Phillips OL (2007) A calibration method for the crown illumination index for assessing forest light environments. For Ecol Manage 242:431–437

    Article  Google Scholar 

  • Kim Y et al (2012) Seasonal carbon dynamics and water fluxes in an Amazon rainforest. Glob Chang Biol 18:1322–1334

    Article  Google Scholar 

  • King DA, Davies SJ, Supardi MNN, Tan S (2005) Tree growth is related to light interception and wood density in two mixed dipterocarp forests of Malaysia. Funct Ecol 19:445–453

    Article  Google Scholar 

  • Lopez-Gonzalez G, Lewis SL, Burkitt M, Phillips OL (2011) ForestPlots.net: a web application and research tool to manage and analyse tropical forest plot data. J Veg Sci 22:610–613. http://www.forestplots.net/. Accessed 3 June 2012

    Google Scholar 

  • Malhi Y et al (2004) The above-ground coarse wood productivity of 104 Neotropical forest plots. Glob Chang Biol 10:563–591

    Article  Google Scholar 

  • Malhi Y et al (2009) Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc Natl Acad Sci USA 106:20610–20615

    Article  CAS  PubMed  Google Scholar 

  • Malhi Y et al (2013) The productivity, metabolism and carbon cycle of two lowland tropical forest plots in SW Amazonia, Peru. Plant Ecol Divers (in press)

  • McCulloh K, Sperry JS, Lachenbruch B, Meinzer FC, Reich PB, Voelker S (2010) Moving water well: comparing hydraulic efficiency in twigs and trunks of coniferous, ring-porous, and diffuse-porous saplings from temperate and tropical forests. New Phytol 186:439–450

    Article  PubMed  Google Scholar 

  • McCulloh KA et al (2011) Comparative hydraulic architecture of tropical tree species representing a range of successional stages and wood density. Oecologia 167:27–37

    Article  PubMed  Google Scholar 

  • McCulloh KA, Johnson DM, Meinzer FC, Voelker SL, Lachenbruch B, Domec JC (2012) Hydraulic architecture of two species differing in wood density: opposing strategies in co-occurring tropical pioneer trees. Plant Cell Environ 35:116–125

    Article  PubMed  Google Scholar 

  • McDowell NG, Sevanto S (2010) The mechanisms of carbon starvation: how, when, or does it even occur at all? New Phytol 186:264–266

    Article  PubMed  Google Scholar 

  • Meinzer FC et al (2008) Coordination of leaf and stem water transport properties in tropical forest trees. Oecologia 156:31–41

    Article  PubMed  Google Scholar 

  • Meinzer FC, Johnson DM, Lachenbruch B, McCulloh KA, Woodruff DR (2009) Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance. Funct Ecol 23:922–930

    Article  Google Scholar 

  • Muller-Landau HC (2004) Interspecific and inter-site variation in wood specific gravity of tropical trees. Biotropica 36:20–32

    Google Scholar 

  • Nepstad DC, Tohver IM, Ray D, Moutinho P, Cardinot G (2007) Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 88:2259–2269

    Article  PubMed  Google Scholar 

  • Newbery DM, Lingenfelder M, Poltz KF, Ong RC, Ridsdale CE (2011) Growth responses of understorey trees to drought perturbation in tropical rainforest in Borneo. For Ecol Manage 262:2095–2107

    Article  Google Scholar 

  • Phillips OL et al (2010) Drought-mortality relationships for tropical forests. New Phytol 187:631–646

    Article  PubMed  Google Scholar 

  • Poorter L et al (2010) The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytol 185:481–492

    Article  PubMed  Google Scholar 

  • Pratt RB, Jacobsen AL, Ewers FW, Davis SD (2007) Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytol 174:787–798

    Article  CAS  PubMed  Google Scholar 

  • Quesada CA et al (2012) Regional and large-scale patterns in Amazon forest structure and function are mediated by variations in soil physical and chemical properties. Biogeosci Discuss 6:3993–4057

    Google Scholar 

  • Quesada CA et al (2010) Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7:1515–1541

    Article  CAS  Google Scholar 

  • Richards PW (1996) The tropical rain forest and ecological study, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Sperry JS, Meinzer FC, McCulloh KA (2008) Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees. Plant Cell Environ 31:632–645

    Article  PubMed  Google Scholar 

  • Stahl C, Burban B, Bompy F, Jolin ZB, Sermage J, Bonal D (2010) Seasonal variation in atmospheric relative humidity contributes to explaining seasonal variation in trunk circumference of tropical rain-forest trees in French Guiana. J Trop Ecol 26:393–405

    Article  Google Scholar 

  • ter Steege H et al (2006) Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443:444–447

    Article  PubMed  Google Scholar 

  • Wagner F, Rossi V, Stahl C, Bonal D, Herault B (2012) Water availability is the main climate driver of Neotropical tree growth. PLoS One 7:e34074

  • Wright SJ et al (2010) Functional traits and the growth-mortality trade-off in tropical trees. Ecology 91:3664–3674

    Article  PubMed  Google Scholar 

  • Zach A, Schuldt B, Brix S, Horna V, Culmsee H, Leuschner C (2010) Vessel diameter and xylem hydraulic conductivity increase with tree height in tropical rainforest trees in Sulawesi, Indonesia. Flora 205:506–512

    Article  Google Scholar 

  • Zanne AE et al (2009) Data from: towards a worldwide wood economics spectrum. Dryad Data Repository

Download references

Acknowledgments

This paper is a product of the RAINFOR, ABERG and GEM research consortia. We thank the staff at Explorer’s Inn (Tambopata) for their support during this project, particularly Zuzana Bartáková and Laura Rantala. Similarly we thank Casey Ryan for providing advice and proof reading, as well as anonymous reviewers who contributed significantly to this manuscript. We also thank INRENA for providing permits to work in the Tambopata Reserve. This work was supported by funding to L. R. from the Natural Environment Research Council (NERC). Long-term data collection at Tambopata was supported by grants to Y. M., O. P., and P. M. from NERC (grants NE/D01025X/1, NE/D014174/1, NE/F01680/1) and the Gordon and Betty Moore Foundation. O. P. and Y. M. are supported by Advanced Investigator Grants from the European Research Council, Y. M. is also supported by the Jackson Foundation and O. P. by a Royal Society Wolfson Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucy Rowland.

Additional information

Communicated by Frederick C Meinzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rowland, L., Malhi, Y., Silva-Espejo, J.E. et al. The sensitivity of wood production to seasonal and interannual variations in climate in a lowland Amazonian rainforest. Oecologia 174, 295–306 (2014). https://doi.org/10.1007/s00442-013-2766-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-013-2766-9

Keywords

Navigation