Skip to main content
Log in

Studies on the foliage of Myricaria germanica (Tamaricaceae) and their evolutionary and ecological implications

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Ancestral halophytic traits such as salt glands and leaf deciduousness have facilitated the adaptation of Myricaria germanica to non-saline calcium-rich soils.

Abstract

Myricaria germanica is a scale-leaved, deciduous shrub from the Tamaricaceae, a salt gland family of halophytes, xerophytes and rheophytes usually from xeric, saline areas. Atypically, the genus Myricaria is usually from mesic, non-saline areas. In this study, we describe the shoot morphology and anatomy of seedlings and adult plants of Myricaria germanica in order to explore its adaptation to the environment. It is a species of montane to subalpine-flooded riverine areas on non-saline limestone and dolomite soils. The adult leaves show strong leaf reduction but no other significant xeromorphic or scleromorphic features. While the salt glands of most Tamaricaceae secrete NaCl, our SEM EDS investigations show that Myricaria germanica secretes large amounts of Ca and Mg, probably as CaSO4 and as Mg-containing CaCO3, rather than NaCl. This suggests that the evolution of salt glands in a halophytic ancestor may have been an enabling trait that facilitated the adaptation of Myricaria germanica to non-saline Ca-rich soils. Because leaf deciduousness can also be an adaptation for reduction of plant NaCl content, the same may apply to this Myricaria germanica trait. Similarly, leaf reduction can evolve as a response to osmotic stress in saline areas. Its persistence in Myricaria germanica may no longer have any adaptational significance. Our work highlights the dichotomy of the stress-tolerant family Tamaricaceae into two types of stressful habitats, one lowland (e.g. Tamarix) and one montane to alpine (Myricaria). Similar range fragmentation is known in Mediterranean taxa like Armeria and Astragalus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albert R (1975) Salt regulation in halophytes. Oecologia 21:57–71

    Article  PubMed  Google Scholar 

  • Bachmann J (1997) Ökologie und Verbreitung der Deutschen Tamariske (Myricaria germanica Desv.) in Südtirol und deren pflanzensoziologische Stellung. Diploma-thesis, University of Vienna

  • Beadle NCW (1966) Soil phosphate and its role in molding segments of the Australian flora and vegetation with special reference to xeromorphy and sclerophylly. Ecology 47:992–1007

    Article  Google Scholar 

  • Berry WL (1970) Characteristics of salts secreted by Tamarix aphylla. Am J Bot 57: 1226–1230

    Article  CAS  Google Scholar 

  • Bill HC, Spahn P, Reich M (1997) Bestandsveränderung und Besiedlungsdynamik der Deutschen Tamariske, Myricaria germanica (L.) Desv., an der oberen Isar (Bayern). Z Ökol Naturschutz 6: 137–150

    Google Scholar 

  • Blondel J, Aronson J, Bodiou J-Y, Boeuf G (2010) Biological diversity in space and time, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Blum A (1996) Crop responses to drought and the interpretation of adaptation. Plant Growth Regul 20:135–148

    Article  CAS  Google Scholar 

  • Blum A, Arkin GF (1984) Sorghum root growth and water use as affected by water supply and growth duration. Field Crop Res 9:131–142

    Article  Google Scholar 

  • Bosabalidis AM, Kofidis G (2002) Comparative effects of drought stress on leaf anatomy of two olive cultivars. Plant Sci 163: 375–379

    Article  CAS  Google Scholar 

  • Brunswik H (1920) Über das Vorkommen von Gipskristallen bei Tamaricaceae. Sitzungsberichte der Akademie d wiss math-naturw Klasse Abt I 129:115–139

    Google Scholar 

  • Carlquist S (2010) Caryophyllales: a key group for understanding wood anatomy character states and their evolution. Bot J Linn Soc 164:342–393

    Article  Google Scholar 

  • Clode PL, Marshall AT (2003) Skeletal microstructure of Galaxea fascicularis: a high resolution SEM study. Biol Bull 204:146–154

    Article  PubMed  Google Scholar 

  • Conti E, Soltis DE, Hardig TM, Schneider J (1999) Phylogenetic relationships of Silver Saxifrages (Saxifraga, Sect. Ligulatae): implications for the evolution of substrate, specification, life histories, and biogeography. Mol Phylogen Evol 13:536–555

    Article  CAS  Google Scholar 

  • De Laubenfels DJ (1953) The external morphology of coniferous leaves. Phytomorphology 3:1–20

    Google Scholar 

  • Dörken VM (2013) Leaf dimorphism in Thuja plicata and Platycladus orientalis (thujoid Cupressaceae s. str., Coniferales): the changes in morphology and anatomy from juvenile needle leaves to mature scale leaves. Plant Syst Evol 299:1991–2001

    Article  Google Scholar 

  • Dörken VM (2014) Leaf-morphology and leaf-anatomy in Ephedra altissima Desf. (Ephedraceae, Gnetales) and their evolutionary relevance. Feddes Repert 123: 243–255

    Article  Google Scholar 

  • Dörken VM, Jagel A (2014) Pinus sylvestris—Wald-Kiefer (Pinaceae), Baum des Jahres 2007. Jahrb Bochumer Bot Ver 5: 246–254

    Google Scholar 

  • Dörken VM, Parsons R (2016) Morpho-anatomical studies on the change in the foliage of two imbricate-leaved New Zealand podocarps: Dacrycarpus dacrydioides and Dacrydium cupressinum. Plant Syst Evol 302:41–54

    Article  Google Scholar 

  • Dörken, VM, Parsons R (2017) Morpho-anatomical studies on the leaf reduction in Casuarina: the ecology of xeromorphy. Trees (in press)

  • Dörken VM, Stützel T (2011) Morphology and anatomy of anomalous cladodes in Sciadopitys verticillata Siebold & Zucc. (Sciadopityaceae). Trees (Berlin) 25: 199–213

    Article  Google Scholar 

  • Düll R, Kutzelnigg H (2011) Taschenlexikon der Pflanzen Deutschlands und angrenzender Länder, 7th edn. Quelle and Meyer, Wiebelsheim

    Google Scholar 

  • Eckenwalder JE (2009) Conifers of the world. Timber Press, Portland

    Google Scholar 

  • eFloras (2008) Missouri botanical garden, Harvard University Herbaria, Cambridge. http://www.efloras.org (cited 08.09.2016)

  • Egger G, Steineder R, Angermann K (2014) Erhebung und Bewertung der Deutschen Tamariske (FFH Lebensraumtyp 3230 Alpine Flüsse mit Ufergehölzen von Myricaria germanica) an der Isel und deren Zubringern Tauernbach, Schwarzach und Kalserbach Teil I. eb&p Umweltbüro GmbH, Klagenfurt. pp. 1–57

    Google Scholar 

  • Endress PK (1975) Der Verbreitungsrückgang von Myricaria germanica Desv. und Typha minima Hoppe auf der Alpennordseite Graubündens. Vierteljahrsschr Naturforsch Ges Zürich 120: 1–14

    Google Scholar 

  • Evert RF (2006) Esau’s plant anatomy, 3rd edn. Wiley, New York

    Book  Google Scholar 

  • Fahn A, Cutler D (1992) Xerophytes. Bornträger, Berlin

    Google Scholar 

  • Faraday CD, Thomson WW (1986) Functional aspects of the salt glands of the Plumbaginaceae. J Exp Bot 37:1129–1135

    Article  CAS  Google Scholar 

  • Farjon A (2005) A monograph of Cupressaceae and Sciadopitys. Royal Botanic Gardens, Kew

    Google Scholar 

  • Farjon A (2010a) A handbook of the world´s conifers, vol. I. Brill, Leiden

    Book  Google Scholar 

  • Farjon A (2010b) A handbook of the world´s conifers, vol. II. Brill, Leiden

    Book  Google Scholar 

  • Feustel H (1921) Anatomie und Biologie der Gymnospermenblätter. Beih Bot Centralbl 38: 177–253

    Google Scholar 

  • Fitting H (1950) Weitere Beobachtungen über die Induktion der Dorsiventralität in den blattartigen Zweigsystemen von Cupressaceen. Planta 37:676–696

    Article  Google Scholar 

  • Foster AS, Gifford EM (1974) Comparative morphology of vascular plants, 2nd edn. Freeman, San Francisco

    Google Scholar 

  • Gaskin JF (2003) Tamaricaceae. In: Kubitzki K, Bayer C (eds) The families and genera of vascular plants, vol 5. Springer, Berlin, pp 336–338

    Google Scholar 

  • Gerlach D (1984) Botanische Mikrotomtechnik, eine Einführung, 2nd edn. Thieme, Stuttgart

    Google Scholar 

  • Gladfelter EH (1983) Skeletal development in Acropora cervicornis. II. Diel patterns of calcium carbonate accretion. Coral Reefs 2:91–100

    Article  Google Scholar 

  • Hanson AD, Rathinasabapathi B, Rivoal J, Burnet M, Dillon MO, Douglas AG (1994) Osmoprotective compounds in the Plumbaginaceae: a natural experiment in metabolic engineering of stress tolerance. Proc Natl Acad Sci USA 91:306–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardion L, Dumas PJ, Abdel-Samad F, Kharrat MBD, Surina B, Affre L, Medail F, Bacchetta G, Baumel A (2016) Geographical isolation caused diversification in the Mediterranean thorny cushion-like Astragalus L. sect. Tragacantha DC (Fabaceae) Mol Phylogen Evol 97: 187–195

    Article  Google Scholar 

  • Hegi G (1975) Illustrierte Flora von Mittel-Europa. vol 5(1). Carl Hanser-Verlag, München

    Google Scholar 

  • Heywood VH (1982) Blütenpflanzen der Welt. Birkhäuser, Basel

    Google Scholar 

  • Hidaka M (1991) Deposition of fusiform crystals without apparent diurnal rhythm at the growing edge of septa of the coral Galaxea fascicularis. Coral Reefs 10:41–45

    Article  Google Scholar 

  • Hill RS (1998) Fossil evidence for the onset of xeromorphy and scleromorphy in Australian Proteaceae. Aust Syst Bot 11: 391–400

    Article  Google Scholar 

  • Hill RS, Merrifield HE (1993) An early Tertiary macroflora from West Dale, southwestern Australia. Alcheringa 17:285–326

    Article  Google Scholar 

  • Imamura SL (1937) Über die aitiogene Dorsiventralität der Assimilationsorgane bei höheren Pflanzen. Bot Mag (Tokyo) 61: 308–316

    Google Scholar 

  • Kadukova J, Manousaki E, Kalogerakis N (2008) Pb and Cd accumulation and phyto-excretion by salt cedar (Tamarix smyrnensis Bunge). Int J Phytoremed 10:31–46

    Article  CAS  Google Scholar 

  • Kammerer H (2003) Artenschutzprojekt Deutsche Tamariske: Möglichkeiten und Aussichten einer Wiederansiedelung von Myricaria germanica im Gesäuse. Stipa-Technisches Büro für Ökologie (Auftraggeber: Nationalpark Gesäuse GmbH). Graz, pp. 1–29

  • Kiermeier P (1993) Wildgehölze des mitteleuropäischen Raums, BdB Handbuch Teil VIII. Fördergesellschaft “Grün ist Leben” Baumschulen mbH, Pinneberg

    Google Scholar 

  • Köhlein F (1980) Saxifragen und andere Steinbrechgewächse. Ulmer, Stuttgart

    Google Scholar 

  • Korner C (2003) Alpine plant life, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Krüssmann G (1976) Handbuch der Laubgehölze, vol. 1, 2nd edn. Parey, Berlin

    Google Scholar 

  • Krüssmann G (1977) Handbuch der Laubgehölze, vol 2, 2nd edn. Parey, Berlin

    Google Scholar 

  • Krüssmann G (1978) Handbuch der Laubgehölze, vol. 3, 2nd edn. Parey, Berlin

    Google Scholar 

  • Krüssmann G (1983) Handbuch der Nadelgehölze, 2nd edn. Parey, Berlin

    Google Scholar 

  • Kubitzki K (2004) The families and genera of vascular plants. vol 6, flowering plants, Dicotyledons: Celastrales, Oxidales, Rosales, Cornales, Ericales. Springer, Berlin

    Google Scholar 

  • Kubitzki K, Rohwer JG, Bittrich V (1993) The families and genera of vascular plants. vol 2, flowering plants, Dicotyledons: Magnoliid, Hamamelid and Caryophylloid families. Springer, Berlin

    Google Scholar 

  • Kudrnovsky H (2002) Die Deutsche Tamariske an der Isle. Ergebnisse der Kartierung im Auftrag des österreichischen Alpenvereins, Fachabteilung Raumplanung und Naturschutz. Innsbruck. pp. 1–25

  • Langner W (1963) Die Entstehung sogenannter Jugendformen bei Chamaecyparis. Silvae Genet 13: 57–63

    Google Scholar 

  • Lener FP (2011) Etablierung und Entwicklung der Deutschen Tamariske (Myricaria germanica) an der oberen Drau in Kärnten. Diploma-thesis, University of Vienna

  • Liu Y, Wang Y, Huang H (2009) Species-level phylogeographical history of Myricaria plants in the mountain ranges of western China and the origin of M. laxiflora in Three Gorges mountain region. Mol Ecol 18: 2700–2712

    Article  CAS  PubMed  Google Scholar 

  • Loveless AR (1961) A nutritional interpretation of sclerophylly based on differences in the chemical composition of sclerophyllous and mesophytic leaves. Ann Bot (Oxford) 25: 168–184

    Article  CAS  Google Scholar 

  • Loveless AR (1962) Further evidence to support a nutritional interpretation of sclerophylly. Ann Bot (Oxford) 26: 551–561

    Article  Google Scholar 

  • Mabberley DJ (2008) Mabberley’s plant book, 3rd edn. University Press, Cambridge

    Google Scholar 

  • Marschner H, Marschner P (2012) Marschner´s mineral nutrition of higher plants, 3rd edn. Academic Press, London

    Google Scholar 

  • Moor M (1958) Pflanzengesellschaften Schweizer Flussauen. Mitt Schweiz Anstalt Forstl Versuchswesen 34: 221–360

    Google Scholar 

  • Moray C, Goolsby EW, Bromham L (2016) The phylogenetic association between salt tolerance and heavy metal hyperaccumulation in angiosperms. Evol Biol 43:119–130

    Article  Google Scholar 

  • Müller N (1988) Zur Flora und Vegetation des Lechs bei Forchach (Reutte-Tirol)—letzte Reste nordalpiner Wildflußlandschaften. Natur Landschaft 63: 263–269

    Google Scholar 

  • Müller N (1991) Exkursionsführer Lechtal. Hoppea 50: 685–700

    Google Scholar 

  • Müller N (1993) Biotopbrücke Lech. Gart Landschaft 103: 45–48

    Google Scholar 

  • Müller N (1995a) River dynamics and floodplain vegetation and their alterations due to human impact. Arch Hydrobiol Suppl 101. Large Rivers 9:477–512

    Google Scholar 

  • Müller N (1995b) Wandel von Flora und Vegetation nordalpiner Wildflusslandschaften unter dem Einfluss des Menschen. Ber ANL 19: 125–187

    Google Scholar 

  • Müller N, Bürger A (1990) Flußmorphologie und Auenvegetation des Lechs im Bereich der Forchacher Wildflußlandschaft (Oberes Lechtal, Tirol). Jahrb d Ver zum Schutz der Bergwelt 55: 123–154

    Google Scholar 

  • Napp-Zinn K (1966) Anatomie des Blattes. I. Blattanatomie der Gymnospermen. Bornträger, Berlin

    Google Scholar 

  • Parsons RF (2010) Whipcord plants: a comparison of south-eastern Australia with New Zealand. Cunninghamia 11:277–281

    Google Scholar 

  • Petutschnig W (1994) Die Deutsche Tamariske (Myricaria germanica (L.) Desv.) in Kärnten. Carinthia II 104:19–30

  • Ramadan T (1998) Ecophysiology of salt excretion in the xero-halophyte Reaumuria hirtella. New Phytol 139:273–281

    Article  CAS  Google Scholar 

  • Rozema J, Gude H, Pollak G (1981) An ecophysiological study of the salt secretion of four halophytes. New Phytol 89:201–217

    Article  CAS  Google Scholar 

  • Saenger P (2002) Mangrove ecology, silviculture and conservation. Kluwer, Dordrecht

    Book  Google Scholar 

  • Sakai WS (1974) Scanning electron microscopy and energy dispersive X-ray analysis of chalk secreting leaf glands of Plumbago capensis. Am J Bot 61: 94–99

    Article  Google Scholar 

  • Salama FM, El-Naggar SM, Ramadan T (1999) Salt glands of some halophytes in Egypt. Phyton 39: 91–105

    CAS  Google Scholar 

  • Salleo S, Nardini A (2000) Sclerophylly: evolutionary advantage or mere epiphenomenon? Plant Biosyst 134: 247–259

    Article  Google Scholar 

  • Salmon JT (1986) A field guide to the native trees of New Zealand. Reed Methuen, Auckland

    Google Scholar 

  • Scassellati G, Pasqua G, Valletta A, Abbate G (2016) Salt glands of Armeria canescens (Host.) Boiss.: morphological and functional aspects. Plant Biosyst 150: 1134–1139

    Article  Google Scholar 

  • Schälchli U, Abegg J, Hunziger L (2001) Fachbericht Trübung, Strömung, Geschiebetrieb und Kolmation. - in: Internationale Regierungskommission Alpenrhein, Projektgruppe Gewässer und Fischökologie: Trübung und Schwall Alpenrhein. Zürich. pp. 1–101

  • Schmidt H (1930) Zur Funktion der Hydathoden von Saxifraga. Planta 10:314–344

    Article  Google Scholar 

  • Schneider W (1913) Vergleichend-morphologische Untersuchung über die Kurztriebe einiger Arten von Pinus. Flora 105:30–40

    Google Scholar 

  • Seddon G (1974) Xerophytes, xeromorphs and sclerophylls: the history of some concepts in ecology. Biol J Linn Soc 6: 65–87

    Article  CAS  Google Scholar 

  • Seidling W, Ziche D, Beck W (2012) Climate responses and interrelations of stem increment and crown transparency in Norway Spruce, Scots Pine and Common Beech. Forest Ecol Manag 284: 196–204

    Article  Google Scholar 

  • Storey R, Thomson WW (1994) An X-ray microanalysis study of the salt glands and intracellular calcium crystals ofTamarix. Ann Bot (Oxford) 73:307–313

    Article  CAS  Google Scholar 

  • Strasburger E (1872) Die Coniferen und Gnetaceen, Textband. Abel, Leipzig, pp. 382–390

    Book  Google Scholar 

  • Tetzlaf M (2005) Die Anatomie des Gymnospermenblattes unter funktionellen und evolutiven Gesichtspunkten. Diploma. Ruhr-University, Bochum

    Google Scholar 

  • Webb DA, Gornall RJ (1989) Saxifrages of Europe. Helm, London

    Google Scholar 

  • Zhang ML, Meng HH, Zhang HX, Vyacheslav BV, Sanderson SC (2014) Himalayan origin and evolution of Myricaria (Tamaricaeae) in the Neogene. PLoS One 9(6):e9758

    Google Scholar 

  • Zohlen A, Tyler G (2004) Soluble inorganic tissue phosphorus and calcicole-calcifuge behaviour of plants. Ann Bot (Oxford) 94: 427–432

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Mr. Otmar Ficht and Mrs. Anne Kern (Botanic Garden, University of Konstanz, Germany) for producing the seedlings. Furthermore, we thank the Botanic Garden of the Eberhard Karls Universität Tübingen (Germany) for providing research material; the “Amt für Natur, Jagd und Fischerei” (Kanton St. Gallen, Switzerland) for the special permission to collect material in the natural habitat; Dr. Michael Laumann and Mrs. Lauretta Nejedli (Electron Microscopy Center, Department of Biology, University of Konstanz, Germany) for technical support (paraffin technique and SEM). Finally, we thank Dr. Volker Hellmann for his helpful discussions and our field-trips to M. germanica in the northern Alps and Dr. N.C. Uren (Department of Animal, Plant and Soil Sciences, LaTrobe University, Australia) for helpful discussions and advice concerning soil properties.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veit M. Dörken.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by K. Masaka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dörken, V.M., Parsons, R.F. & Marshall, A.T. Studies on the foliage of Myricaria germanica (Tamaricaceae) and their evolutionary and ecological implications. Trees 31, 997–1013 (2017). https://doi.org/10.1007/s00468-017-1523-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-017-1523-9

Keywords

Navigation