Skip to main content
Log in

Layering in the Rocky Mountain treeline ecotone: clonal conifer groups’ distribution, structure, and functional role

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Layering plays a major role in treeline stability. Growth ring pattern of clonal groups reflects both an individualistic and an only temporally common response to the harsh treeline environment.

Abstract

Clonal groups are common to alpine and polar treelines. Distribution, shape, architecture, and development of clonal Picea engelmannii and Abies lasiocarpa in an extremely windy Rocky Mountain treeline ecotone are considered. Clonal groups prevail (>70% of all tree groups). Most of them consist of A. lasiocarpa (65%). Number, growth form, and damage were documented along transects and field routes. Age structure and development of the clonal groups were assessed using increment cores and stem disks. The groups usually consisted of different clonal series with several clonal members in each. On wind-swept terrain, clonal groups exhibit wedge-like, hedge-like, or mat-like habit. One clonal A. lasiocarpa group was studied in detail and it serves as an example showing formation, architecture, and internal growth pattern of clonal series. The clone members in the clone series exhibited an individualistic growth pattern. Wind-control of growth occasionally overruled the often ‘chaotic’ internal group growth pattern. The effect of prevailing winds, however, temporally overlapped with a ‘force’ directed from the center of the group margin (e.g., competition for light, high stem density), as reflected in recurrent change of eccentricity within the clonal trunks. Clonal groups may be of major importance in treeline dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(modified from Holtmeier 1978; Holtmeier and Broll 2010). The inset (upper left) shows the geographical position of the Colorado Front Range. The inset (middle left) shows mean wind directions (% of total wind data) at 500 hPa level. Airflow directions were taken from the daily high-level weather maps (1958–1974). The box at the right hand side indicates the location of the study site on Niwot Ridge

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Modified from Holtmeier 1999

Fig. 12

Modified from Holtmeier 1999

Fig. 13

Similar content being viewed by others

References

  • Arno SF (1984) Timberlines, mountain and arctic frontier. The Mountaineers, Seattle

    Google Scholar 

  • Arno SF, Habeck JR (1972) Ecology of alpine larch (Larix lyallii Parl.) in the Pacific Northwest. Ecol Monogr 42:417–450

    Article  Google Scholar 

  • Barry RG (1973) A climatological transect along the east slope of the Front Range, Colorado. Arctic Alpine Res 5:89–110

    Article  Google Scholar 

  • Bekker MF, Malanson GP (2008) Linear forest patterns in subalpine environments. Prog Phys Geog 32:635–653

    Article  Google Scholar 

  • Benedict JM (1984) Rates of tree-island migration, Colorado Rocky Mountains. Ecology 65:820–823

    Article  Google Scholar 

  • Broll G, Holtmeier F-K (1994) Die Entwicklung von Kleinreliefstrukturen im Waldgrenzökoton der Front Range (Colorado, USA) unter dem Einfluß leewärts wandernder Ablegergruppen (Picea engelmannii and Abies lasiocarpa). Erdkunde 48(1):48–59

    Article  Google Scholar 

  • Caccianiga M, Payette S (2006) Recent advance of white spruce (Picea glauca) in the coastal tundra of the eastern shore of Hudson Bay (Québec, Canada). J Biogeogr 33:2120–2135

    Article  Google Scholar 

  • Caine N (1996) Streamflow patterns in the alpine environment of North Boulder Creek, Colorado Front Range. Z Geomorphol 104:27–42

    Google Scholar 

  • Cooper WS (1931) The layering habit in Sitka spruce and the two western hemlocks. Bot Gaz 91:441–451

    Article  Google Scholar 

  • Daly C, Shankman D (1985) Seedling establishment by conifers above tree limit on Niwot Ridge, Front Range, Colorado, USA. Arctic Alpine Res 17(4):389–400

    Article  Google Scholar 

  • Elliott D (1979) The current regeneration capacity of the northern Canadian trees, Keewatin, N.W.T., Canada: some preliminary observations. Arctic Alpine Res 11(2):243–251

    Article  Google Scholar 

  • Fanta J (1971) Fagus sylvatica L. und das Aceri-Fagetum an der alpinen Waldgrenze in mitteleuropäischen Gebirgen. Vegetatio 44:13–14

    Article  Google Scholar 

  • Fanta J. (1973) Die vegetative Vermehrung der Fichte in der Lüneburger Heide. Mitteilung der Deutschen Dendrologischen Gesellschaft 66:39–48

    Google Scholar 

  • Fink S (1980) Anatomische Untersuchungen über das Vorkommen von Sproß- und Wurzelanlagen im Stammbereich von Laub- und Nadelbäumen. Dissertation, University of Freiburg/Br

  • Grafius DR, Malanson GP (2015) Biomass distribution in dwarf tree, krummholz, and tundra vegetation in the alpine treeline ecotone. Phys Geogr. doi:10.1080/02723646.2015.1050954

    Google Scholar 

  • Hanisch B (1983) Analyse des naturnahen Fichtenwaldes im norwegischen Nationalpark Ormtjernkampen Villmark. Schriftenreihe des Waldbau-Instituts der Albert-Ludwigs-Universität Freiburg i. Br., Volume 1

  • Hansen-Bristow KJ, Ives JD (1985) Composition, form, and distribution of the forest-alpine tundra ecotone, Indian Peaks, Colorado, USA. Erdkunde 39:286–295

    Article  Google Scholar 

  • Holtmeier F-K (1978) Die bodennahen Winde in den Hochlagen der Indian Peaks Section (Colorado Front Range). Münstersche Geographische Arbeiten 3:5–47

    Google Scholar 

  • Holtmeier F-K (1986) Über Bauminseln (Kollektive) an der klimatischen Waldgrenze—unter besonderer Berücksichtigung von Beobachtungen in verschiedenen Hochgebirgen Nordamerikas. Wetter Leben 38:121–129

    Google Scholar 

  • Holtmeier F-K (1987) Der Baumwuchs als klimaökologischer Faktor an der oberen Waldgrenze. Münstersche Geographische Arbeiten 27:145–151

    Google Scholar 

  • Holtmeier F-K (1993) Der Einfluß der generativen und vegetativen Vermehrung auf das Verbreitungsmuster der Bäume und die ökologische Dynamik im Waldgrenzbereich. Beobachtungen und Untersuchungen in Hochgebirgen Nordamerikas und in den Alpen. Geoökodynamik 14:153–182

    Google Scholar 

  • Holtmeier F-K (1996) Der Wind als landschaftsökologischer Faktor in der subalpinen und alpinen Stufe der Front Range, Colorado. Arbeiten aus dem Institut für Landschaftsökologie, Westfälische Wilhelms-Universität Münster 1:19–45

  • Holtmeier F-K (1999) Ablegerbildung im Hochlagenwald und an der oberen Waldgrenze in der Front Range, Colorado. Mitteilungen der Deutschen Dendrologischen Gesellschaft 84:39–61

    Google Scholar 

  • Holtmeier F-K (2009) Mountain timberlines. Ecology, patchiness, and dynamics (2nd edition). Advances in global change research 36. Science + Media B. V., Dordrecht

    Google Scholar 

  • Holtmeier F-K, Broll G (1992) The influence of tree islands and microtopography on pedoecological conditions in the forest-alpine tundra ecotone on Niwot Ridge, Colorado Front Range, USA. Arctic Alpine Res 24(3):216–228

    Article  Google Scholar 

  • Holtmeier F-K, Broll G (2010) Wind as an ecological agent at treelines in North America, the Alps, and the European Subarctic. Phys Geogr 31(3):203–233

    Article  Google Scholar 

  • Kihlman AO (1890) Pflanzenbiologische Studien aus Russisch-Lappland. Acta Societatis pro Fauna et Flora Fennica 6(3):261 pp

    Google Scholar 

  • Kontic R, Niederer M, Nippel CA, Winkler-Seifert A (1986) Jahrringanalysen an Nadelbäumen zur Darstellung und Interpretation von Waldschäden (Wallis, Schweiz). Eidgenössische Anstalt für das forstliche Versuchswesen Bericht 238:46 pp

    Google Scholar 

  • Kullman L (2012) The alpine treeline ecotone in the southwestern Swedish Scandes: Dynamics on different scales. In: Myster RW (ed) Ecotones between forest and grassland. Springer Science + Business Media, New York, pp 271–298

    Chapter  Google Scholar 

  • Kuoch R, Amiet R (1970) Die Verjüngung im Bereich der oberen Waldgrenze der Alpen. Mitteilungen der schweizerischen Anstalt für das forstliche Versuchswesen 46:159–328

    Google Scholar 

  • Laberge M-J, Payette S, Bousquet J (2000) Life span and biomass allocation of stunted black spruce clones in the subarctic environment. J Ecol 88:584–593

    Article  Google Scholar 

  • Larcher W (1980) Klimastreß im Gebirge—Adaptionstraining und Selektionsfilter für Pflanzen. Rheinisch-Westfälische Akademie der Wissenschaften, Vorträge, vol 291, pp 49–80

    Google Scholar 

  • Litaor MI, Willimas M, Seastedt TR (2008) Topographical controls on snow distribution, soil moisture, and species diversity of herbaceous vegetation, Niwot Ridge, Colorado. J Geophys Res 113(3). doi:10.1029/2007J6000419

  • Marr JW (1967) Ecosystems on the east slope of the Front Range of Colorado. Univ Colo Stud Ser Biol 8

  • Marr JW (1977) The development and movement of tree islands near the upper limit of tree growth on the southern Rocky Mountains. Ecology 58:1159–1164

    Article  Google Scholar 

  • Mczkowski S (1972) Structure and ecology of the spruce association Piceetum tatricum of the upper limit of its distribution in Tatra National Park. Academy of Agriculture, Forest Faculty, Cracow

    Google Scholar 

  • Mitton JB (1985) So grows the tree. Nat Hist 1:58–65

    Google Scholar 

  • Nordfors GA (1921) Något om den vegetative föryngringen I våra skkogar med särskild hänsyn till franens föryngring i fjällskog. Norrlands Sogvårdsforbuns Tidskrift 1

  • Öberg L, Kullman L (2011) Ancient subalpine clonal spruces (Picea abies): sources of postglacial vegetation history in the Swedish Scandes. Arctic 64:183–196

    Article  Google Scholar 

  • Payette S (1976) Succession écologique des forêts d’épinette blanche et fluctuations climatiques, Poste-de-la-Baleine, Nouveau Québec. Can J Bot 54:1394–1402

    Article  Google Scholar 

  • Payette S, Moreneau C (1993) Holocene relict woodland at the eastern Canadian treeline. Quaternary Res 39:84–89

    Article  Google Scholar 

  • Payette S, Delwaide A, Moreneau C, Lavoie C (1994) Stem analysis of a long-lived black spruce close at timberline. Arct Antarct Alp Res 26(1):56–59

    Article  Google Scholar 

  • Ragonezi C, Klimaszewska K, Castro MR, Lima M, de Oliveira P, Zavattieri MA (2010) Adventitious rooting of conifers: influence of physical and chemical factors. Trees 24:975–992

    Article  CAS  Google Scholar 

  • Schmidt-Vogt H (1991) Die Fichte, Band II/3. Verlag Paul Parey, Hamburg

    Google Scholar 

  • Schönenberger W (1978) Ökologie der natürlichen Verjüngung der Fichte und Bergföhre in Lawinenzügen der nördlichen Voralpen. Mitteilungen der Eidgenössischen Anstalt für das forstliche Versuchswesen 54(3) 215–361

    Google Scholar 

  • Schönenberger W (1981) Die Wuchsformen der Bäume an der alpinen Waldgrenze. Schweizerische Zeitschrift für Forstwesen 13(3):149–162

    Google Scholar 

  • Schweingruber FH (1983) Der Jahrring. Standort, Methodik, Zeit und Klima in der Dendrochronologie. Bern

  • Schweingruber FK, Albrecht H, Beck M, Hessel J, Joos K, Keller D, Kontic R, Lange K, Niederer M, Nippel C, Spang S, Spinnler A, Steiner B, Winkler-Seifert A (1986) Abrupte Zuwachsschwankungen in Jahrringabfolgen als ökologische Indikatoren. Dendrochronologia 4:125–138

    Google Scholar 

  • Šenfeldr M, Urban J, Madĕra P, Kučera J (2016) Redistribution of water via layering branches between connected parent and daughter trees in Norway spruce clonal groups. Trees 30:5–17

    Article  Google Scholar 

  • Stimm B (1985) Untersuchungen über Ablegerbildung und sproßbürtige Bewurzelung der Fichte (Picea abies (L.) Karst. Dissertation, Forstwissenschaftliche Fakultät, University of München

  • Stimm B (1987) Morphologisch-anatomische Untersuchungen zur Ablegerbildung und sproßbürtigen Bewurzelung der Fichte (Picea abies (L.) Karst. Flora 179:421–443

    Article  Google Scholar 

  • Stokes MA, Smiley TL (1968) An introduction to tree ring dating. Chicago

  • Vacek S, Hejcmanová M, Hejcman M (2012) Vegetative reproduction of Picea abies by artificial layering at the ecotone of the alpine timberline in the Giant (Krkonoše) Mountains, Czech Republic. For Ecol Manag 263:199–207

    Article  Google Scholar 

  • Wardle P (1968) Engelmann spruce (Picea engelmannii Engel.) at its upper limits on the Front Range, Colorado. Ecology 49:483–495

    Article  Google Scholar 

  • Zimmermann MH, Brown CL (eds) (1971) Trees–structure and function. Springer, Berlin

    Google Scholar 

Download references

Acknowledgements

Our thanks go to Prof. Robert M. M. Crawford (University of St. Andrews, Scotland) for revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich-Karl Holtmeier.

Additional information

Communicated by A. Bräuning.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holtmeier, FK., Broll, G. Layering in the Rocky Mountain treeline ecotone: clonal conifer groups’ distribution, structure, and functional role. Trees 31, 953–965 (2017). https://doi.org/10.1007/s00468-017-1520-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-017-1520-z

Keywords

Navigation