Skip to main content
Log in

Stem growth is favored at expenses of root growth in mixed stands and humid conditions for Douglas-fir (Pseudotsuga menziesii) and European beech (Fagus sylvatica)

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

The study found an increased investment into stem growth (compared to root growth) if trees were surrounded by a complementary species. This response is consistent with known patterns about root–stem allometry under favorable conditions (humidity and stand density).

Abstract

The study investigated partitioning of resources between roots and stems in mono-species and mixed-species stands of Douglas-fir and European beech at four different sites. We combined tree ring analyses of stems and coarse roots to scrutinize root–stem allometry with a focus on how it is influenced by species mixture and humidity. The results show that allometry in mixed stands changed in favor of stem growth for both species. The greatest relative allocation into stem growth was observed for individual trees which were completely surrounded by trees of the other species. The data indicate that a decrease of stand density, which was used as a proxy for tree competition, has the same effect on allocation. To analyze the influence of humidity, we used a long- and short-term index. Based on these, we can show that allocation changes with general site conditions and annual humidity variations. We found that on both time scales, both species increase resource investment into stem growth if conditions are more humid. Under harsher conditions, allocation shifts into root growth. The findings contribute to understanding the overyielding in mixed stands. Mixing Douglas-fir and European beech leads to the same allocation patterns as an improvement of site conditions. We suggest that for both species, mixture is equivalent to growing on a better site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abetz P (1976) Beiträge zum Baumwachstum. Der h/d-Wert—mehr als ein Schlankheitsgrad. Forst- u. Holzwirt 31:389–393

    Google Scholar 

  • Amoroso MM, Turnblom EC (2006) Comparing productivity of pure and mixed Douglas-fir and western hemlock plantations in the Pacific Northwest. Can J For Res 36(6):1484–1496. doi:10.1139/X06-042

    Article  Google Scholar 

  • Aranda I, Forner A, Cuesta B, Valladares F (2012) Species-specific water use by forest tree species: from the tree to the stand. Agric Water Manag 114:67–77. doi:10.1016/j.agwat.2012.06.024

    Article  Google Scholar 

  • Bartelink HH (1998) Simulation of growth and competition in mixed stands of Douglas-fir and beech. Landbouwuniversiteit Wageningen, Wageningen

    Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) lme4: Linear mixed-effects models using Eigen and S4

  • Binkley D (2003) Seven decades of stand development in mixed and pure stands of conifers and nitrogen-fixing red alder. Can J For Res 33(11):2274–2279. doi:10.1139/x03-158

    Article  Google Scholar 

  • Binkley D, Greene S (1983) Production in mixtures of conifers and red alder: the importance of site fertility and stand age. In: Ballard R, Gessel S (eds.) International Union of Forestry Research Organizations Symposium on Forest Site and Continuous Productivity, p 112–117

  • Bitterlich W (1952) Die Winkelzählprobe. Forstwissenschaftliches Centralblatt 71:215–225

    Article  Google Scholar 

  • Bloom AJ, Chapin FS, Mooney HA (1985) Resource limitation in plants–an economic analogy. Annual review of Ecology and Systematics, p 363–392

  • Bolte A, Villanueva I (2005) Interspecific competition impacts on the morphology and distribution of fine roots in European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.). Eur J Forest Res 125(1):15–26. doi:10.1007/s10342-005-0075-5

    Article  Google Scholar 

  • Bréda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci 63(6):625–644. doi:10.1051/forest:2006042

    Article  Google Scholar 

  • Burnham KP, Anderson DR (1998) Model selection and inference: a practical information-theoretic approach. Springer, New York

    Book  Google Scholar 

  • Burnham KP, Anderson DR (2004) Multimodel inference understanding AIC and BIC in model selection. Sociol Methods Res 33(2):261–304

    Article  Google Scholar 

  • Cavard X, Bergeron Y, Chen HYH, Paré D, Laganière J, Brassard B (2011) Competition and facilitation between tree species change with stand development. Oikos 120(11):1683–1695. doi:10.1111/j.1600-0706.2011.19294.x

    Article  Google Scholar 

  • Comeau PG, Kimmins JP (1989) Above-and below-ground biomass and production of lodgepole pine on sites with differing soil moisture regimes. Can J For Res 19(4):447–454

    Article  Google Scholar 

  • Cook E, Kairiūkštis L (1990) Methods of dendrochronology: Applications in the environmental science. Kluwer Academic Publishers; International Institute for Applied Systems Analysis, Dordrecht, Netherlands, Boston, [Place of publication not identified]

  • Core Team R (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Coutand C, Dupraz C, Jaouen G, Ploquin S, Adam B (2008) Mechanical stimuli regulate the allocation of biomass in trees: demonstration with young Prunus avium trees. Ann Bot 101(9):1421–1432. doi:10.1093/aob/mcn054

    Article  PubMed  PubMed Central  Google Scholar 

  • Cremer M, Kern NV, Prietzel J (2016) Soil organic carbon and nitrogen stocks under pure and mixed stands of European beech, Douglas fir and Norway spruce. For Ecol Manage 367:30–40. doi:10.1016/j.foreco.2016.02.020

    Article  Google Scholar 

  • Dieler J, Pretzsch H (2013) Morphological plasticity of European beech (Fagus sylvatica L.) in pure and mixed-species stands. For Ecol Manage 295:97–108. doi:10.1016/j.foreco.2012.12.049

    Article  Google Scholar 

  • Dirnberger GF, Sterba H (2014) A comparison of different methods to estimate species proportions by area in mixed stands. For Syst 23(3):534. doi:10.5424/fs/2014233-06027

    Google Scholar 

  • Eckstein D, Bauch J (1969) Beitrag zur Rationalisierung eines dendrochronologischen Verfahrens und zur Analyse seiner Aussagesicherheit. Forstw Cbl 88(1):230–250. doi:10.1007/BF02741777

    Article  Google Scholar 

  • Elkin C, Giuggiola A, Rigling A, Bugmann H (2015) Short- and long-term efficacy of forest thinning to mitigate drought impacts in mountain forests in the European Alps. Ecol Appl 25(4):1083–1098. doi:10.1890/14-0690.1

    Article  PubMed  Google Scholar 

  • Erickson HE, Harrington CA, Marshall DD (2009) Tree growth at stand and individual scales in two dual-species mixture experiments in southern Washington State, USA. Can J For Res 39(6):1119–1132. doi:10.1139/X09-040

    Article  Google Scholar 

  • Forrester DI (2014) The spatial and temporal dynamics of species interactions in mixed-species forests: from pattern to process. For Ecol Manage 312:282–292. doi:10.1016/j.foreco.2013.10.003

    Article  Google Scholar 

  • Forrester DI, Bauhus J, Cowie AL, Vanclay JK (2006a) Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: a review. For Ecol Manage 233(2–3):211–230. doi:10.1016/j.foreco.2006.05.012

    Article  Google Scholar 

  • Forrester DI, Cowie AL, Bauhus J, Wood JT, Forrester RI (2006b) Effects of changing the supply of nitrogen and phosphorus on growth and interactions between Eucalyptus globulus and Acacia mearnsiiin a pot trial. Plant Soil 280(1–2):267–277. doi:10.1007/s11104-005-3228-x

    Article  CAS  Google Scholar 

  • Forrester DI, Theiveyanathan S, Collopy JJ, Marcar NE (2010) Enhanced water use efficiency in a mixed Eucalyptus globulus and Acacia mearnsii plantation. Product Trop Plant 259(9):1761–1770. doi:10.1016/j.foreco.2009.07.036

    Google Scholar 

  • Gandullo JM, Serrada R (1977) Mapa de productividad potencial forestal de la España peninsular. Monografias INIA (Spain). no 16

  • Gardiner B, Berry P, Moulia B (2016) Review: wind impacts on plant growth, mechanics and damage. Plant Sci 245:94–118. doi:10.1016/j.plantsci.2016.01.006

    Article  CAS  PubMed  Google Scholar 

  • Gauer J, Kroiher F (eds.) (2012) Waldokologische Naturraume Deutschlands: Forstliche Wuchsgebiete und Wuchsbezirke—Digitale Topographische Grundlagen—Neubearbeitung Stand 2011, Sonderheft Nr. 359. Landbauforschung vTI Agriculture and Forestry Research

  • Guillemot J, Klein EK, Davi H, Courbet F (2015) The effects of thinning intensity and tree size on the growth response to annual climate in Cedrus atlantica: a linear mixed modeling approach. Ann For Sci 72(5):651–663. doi:10.1007/s13595-015-0464-y

    Article  Google Scholar 

  • Hendriks C, Bianchi F (1995) Root density and root biomass in pure and mixed forest stands of Douglas-fir and beech. Neth J Agric Sci 43:321–331

    Google Scholar 

  • Hugershoff R (1936) Die mathematischen Hilfsmittel der Kulturingenieurs und Biologen: Herleitung von gesetzmäßigen Zusammenhängen als Manuskript veröffentlicht, Dresden

  • Johann K (1977) Eine neue Jahrringmeßanlage fuer Bohrkerne und Stammscheiben. forstarchiv 48:24–26

    Google Scholar 

  • Jonard F, André F, Ponette Q, Vincke C, Jonard M (2011) Sap flux density and stomatal conductance of European beech and common oak trees in pure and mixed stands during the summer drought of 2003. J Hydrol 409(1–2):371–381. doi:10.1016/j.jhydrol.2011.08.032

    Article  Google Scholar 

  • Jucker T, Bouriaud O, Avacaritei D, Coomes DA, Knops J (2014) Stabilizing effects of diversity on aboveground wood production in forest ecosystems: linking patterns and processes. Ecol Lett 17(12):1560–1569. doi:10.1111/ele.12382

    Article  PubMed  Google Scholar 

  • Kelty MJ (2006) The role of species mixtures in plantation forestry. Improv Product Mixed-Species Plant 233(2–3):195–204. doi:10.1016/j.foreco.2006.05.011

    Google Scholar 

  • Keyes MR, Grier CC (1981) Above- and below-ground net production in 40-year-old Douglas-fir stands on low and high productivity sites. Can J For Res 11(3):599–605. doi:10.1139/x81-082

    Article  Google Scholar 

  • Krause C, Morin H (1995) Changes in radial increment in stems and roots of balsam fir [Abies balsamea (L.) Mill.] after defoliation spruce budworm. For Chron 71(6):747–754. doi:10.5558/tfc71747-6

    Article  Google Scholar 

  • Kuznetsova A, Brockhoff B, Christensen HB (2015) lmerTest: tests in linear mixed effects models

  • Larocque GR, Luckai N, Adhikary SN, Groot A, Bell FW, Sharma M (2013) Competition theory—science and application in mixed forest stands: review of experimental and modelling methods and suggestions for future research. Environ Rev 21(2):71–84. doi:10.1139/er-2012-0033

    Article  Google Scholar 

  • Lavelle P, Spain AV (2005) Soil ecology, 2. print with corr. Springer, Dordrecht

  • Lebourgeois F, Gomez N, Pinto P, Mérian P (2013) Mixed stands reduce Abies alba tree-ring sensitivity to summer drought in the Vosges mountains, western Europe. For Ecol Manage 303:61–71. doi:10.1016/j.foreco.2013.04.003

    Article  Google Scholar 

  • Lehto T, Zwiazek JJ (2011) Ectomycorrhizas and water relations of trees: a review. Mycorrhiza 21(2):71–90. doi:10.1007/s00572-010-0348-9

    Article  PubMed  Google Scholar 

  • Liang J, Crowther TW, Picard N, Wiser S, Zhou M, Alberti G et al (2016) Positive biodiversity-productivity relationship predominant in global forests. Science 354(6309):196–209. doi:10.1126/science.aaf8957

    Article  CAS  Google Scholar 

  • Matyssek R, Fromm J, Rennenberg H, Roloff A (2010) Biologie der Bäume: Von der Zelle zur globalen Ebene; 32 Tabellen. UTB Biologie, Agrar- und Forstwissenschaften, Landschaftsplanung, vol 8450. Ulmer, Stuttgart

  • Mauer O, Palátová E (2012) Root system development in Douglas fir (Pseudotsuga menziesii [Mirb.] Franco) on fertile sites. J For Sci 58(9):400–409

    Google Scholar 

  • Mayer P, Brang P, Dobbertin M, Hallenbarter D, Renaud J-P, Walthert L, Zimmermann S (2005) Forest storm damage is more frequent on acidic soils. Ann For Sci 62(4):303–311. doi:10.1051/forest:2005025

    Article  CAS  Google Scholar 

  • McConnaughay KDM, Coleman JS (1999) Biomass allocation in plants: ontogeny or optimality? A test along three resource gradients. Ecology 80(8):2581–2593. doi:10.1890/0012-9658(1999)080[2581:BAIPOO]2.0.CO;2

  • McMinn RG (1963) Characteristics of Douglas-fir root systems. Can J Bot 41(1):105–122

    Article  Google Scholar 

  • Meier IC, Leuschner C (2008) Belowground drought response of European beech: fine root biomass and carbon partitioning in 14 mature stands across a precipitation gradient. Glob Change Biol 14(9):2081–2095. doi:10.1111/j.1365-2486.2008.01634.x

    Article  Google Scholar 

  • Moore GW, Bond BJ, Jones JA (2011) A comparison of annual transpiration and productivity in monoculture and mixed-species Douglas-fir and red alder stands. For Ecol Manag 262(12):2263–2270

    Article  Google Scholar 

  • Nicoll BC, Ray D (1996) Adaptive growth of tree root systems in response to wind action and site conditions. Tree Physiol 16(11–12):891–898. doi:10.1093/treephys/16.11-12.891

    Article  PubMed  Google Scholar 

  • Nikolova PS, Zang C, Pretzsch H (2011) Combining tree-ring analyses on stems and coarse roots to study the growth dynamics of forest trees: a case study on Norway spruce (Picea abies [L.] H. Karst). Trees 25(5):859–872. doi:10.1007/s00468-011-0561-y

    Article  Google Scholar 

  • Paterson SS (1956) Forest area of the world and its potential productivity, Göteborg

  • Pearson JA, Fahey TJ, Knight DH (1984) Biomass and leaf area in contrasting lodgepole pine forests. Can J For Res 14(2):259–265. doi:10.1139/x84-050

    Article  Google Scholar 

  • Peters RH (1983) The ecological implications of body size. Cambridge University, Cambridge

    Book  Google Scholar 

  • Piotto D (2008) A meta-analysis comparing tree growth in monocultures and mixed plantations. For Ecol Manage 255(3–4):781–786. doi:10.1016/j.foreco.2007.09.065

    Article  Google Scholar 

  • Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012) Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol 193(1):30–50. doi:10.1111/j.1469-8137.2011.03952.x

    Article  CAS  PubMed  Google Scholar 

  • Pretzsch H (2002) Grundlagen der Waldwachstumsforschung. Parey, Berlin

    Google Scholar 

  • Pretzsch H (2009) Forest dynamics, growth and yield: from measurement to model. Springer, Berlin, London

    Book  Google Scholar 

  • Pretzsch H, Biber P (2016) Tree species mixing can increase maximum stand density. Can J For Res. doi:10.1139/cjfr-2015-0413

    Google Scholar 

  • Pretzsch H, Schütze G (2016) Effect of tree species mixing on the size structure, density, and yield of forest stands. Eur J Forest Res 135(1):1–22. doi:10.1007/s10342-015-0913-z

    Article  Google Scholar 

  • Pretzsch H, Biber P, Uhl E, Hense P (2012a) Coarse root–shoot allometry of Pinus radiata modified by site conditions in the Western Cape province of South Africa. South For J For Sci 74(4):237–246. doi:10.2989/20702620.2012.741794

    Google Scholar 

  • Pretzsch H, Uhl E, Biber P, Schütze G, Coates KD (2012b) Change of allometry between coarse root and shoot of Lodgepole pine (Pinus contorta DOUGL. ex. LOUD) along a stress gradient in the sub-boreal forest zone of British Columbia. Scand J For Res 27(6):532–544. doi:10.1080/02827581.2012.672583

    Article  Google Scholar 

  • Pretzsch H, Schütze G, Uhl E (2013) Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation. Plant Biol 15(3):483–495. doi:10.1111/j.1438-8677.2012.00670.x

    Article  CAS  PubMed  Google Scholar 

  • Pretzsch H, Block J, Dieler J, Gauer J, Göttlein A, Moshammer R, Schuck J, Weis W (2014) Nährstoffentzüge durch die Holz- und Biomassenutzung in Wäldern. Teil 1: Schätz-funktionen für Biomasse und Nährelemente und ihre Anwendung in Szenariorechnungen. Allg Forst Jagdztg 185(11/12):261–285

    Google Scholar 

  • Pretzsch H, del Río M, Ammer C, Avdagic A, Barbeito I, Bielak K, Brazaitis G, Coll L, Dirnberger G, Drössler L, Fabrika M, Forrester DI, Godvod K, Heym M, Hurt V, Kurylyak V, Löf M, Lombardi F, Matović B, Mohren F, Motta R, den Ouden J, Pach M, Ponette Q, Schütze G, Schweig J, Skrzyszewski J, Sramek V, Sterba H, Stojanović D, Svoboda M, Vanhellemont M, Verheyen K, Wellhausen K, Zlatanov T, Bravo-Oviedo A (2015) Growth and yield of mixed versus pure stands of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) analysed along a productivity gradient through Europe. Eur J Forest. doi:10.1007/s10342-015-0900-4

    Google Scholar 

  • Pretzsch H, del Río M, Schütze G, Ammer C, Annighöfer P, Avdagic A, Barbeito I, Bielak K, Brazaitis G, Coll L, Drössler L, Fabrika M, Forrester DI, Kurylyak V, Löf M, Lombardi F, Matović B, Mohren F, Motta R, den Ouden J, Pach M, Ponette Q, Skrzyszewski J, Sramek V, Sterba H, Svoboda M, Verheyen K, Zlatanov T, Bravo-Oviedo A (2016) Mixing of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) enhances structural heterogeneity, and the effect increases with water availability. For Ecol Manage 373:149–166. doi:10.1016/j.foreco.2016.04.043

    Article  Google Scholar 

  • Radosevich SR, Hibbs DE, Ghersa CM (2006) Effects of species mixtures on growth and stand development of Douglas-fir and red alder. Can J For Res 36(3):768–782. doi:10.1139/x05-280

    Article  Google Scholar 

  • Reubens B, Pannemans B, Danjon F, de Proft M, de Baets S, de Baerdemaeker J, Poesen J, Muys B (2009) The effect of mechanical stimulation on root and shoot development of young containerised Quercus robur and Robinia pseudoacacia trees. Trees 23(6):1213–1228. doi:10.1007/s00468-009-0360-x

    Article  Google Scholar 

  • Röhrig E, Bartsch N, Lüpke B von, Dengler A (2006) Waldbau auf ökologischer Grundlage: 91 Tabellen, 7., vollst. aktual. Aufl. UTB Forst- und Agrarwissenschaften, Ökologie, Biologie, vol 8310. UTB, Stuttgart

  • Sands R, Mulligan DR (1990) Water and nutrient dynamics and tree growth. For Ecol Manage 30(1–4):91–111. doi:10.1016/0378-1127(90)90129-Y

    Article  Google Scholar 

  • Schall P, Lödige C, Beck M, Ammer C (2012) Biomass allocation to roots and shoots is more sensitive to shade and drought in European beech than in Norway spruce seedlings. For Ecol Manage 266:246–253. doi:10.1016/j.foreco.2011.11.017

    Article  Google Scholar 

  • Schelhaas MJ (2008) The wind stability of different silvicultural systems for Douglas-fir in the Netherlands: a model-based approach. Forestry 81(3):399–414. doi:10.1093/forestry/cpn028

    Article  Google Scholar 

  • Schütz J-P, Götz M, Schmid W, Mandallaz D (2006) Vulnerability of spruce (Picea abies) and beech (Fagus sylvatica) forest stands to storms and consequences for silviculture. Eur J Forest Res 125(3):291–302. doi:10.1007/s10342-006-0111-0

    Article  Google Scholar 

  • Shainsky LJ, Newton M, Radosevich SR (1992) Effects of intra- and inter-specific competition on root and shoot biomass of young Douglas-fir and red alder. Can J For Res 22(1):101–110. doi:10.1139/x92-014

    Article  Google Scholar 

  • Taegger S, Kölling C (2016) Standortinformationssystem BaSIS. AFZ-DerWald 71(4):10–13

    Google Scholar 

  • Thomas FM, Bögelein R, Werner W (2015) Interaction between Douglas fir and European beech: investigations in pure and mixed stands = Wechselwirkungen zwischen Douglasie und Rotbuche: Untersuchungen an Rein- und Mischbeständen. Forstarchiv forstwissenschaftliche Fachzeitschrift 86(4):83–91

    Google Scholar 

  • Thornley JH (1972) A balanced quantitative model for root: shoot ratios in vegetative plants. Ann Bot 36(2):431–441

    Google Scholar 

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38(1):55–94. doi:10.2307/210739

    Article  Google Scholar 

  • Thurm EA, Pretzsch H (2016) Productivity and structural properties of mixed versus pure stands of European beech (Fagus sylvatica L.) and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) depends on environmental conditions. Ann For Sci. doi:10.1007/s13595-016-0588-8

    Google Scholar 

  • Thurm EA, Uhl E, Pretzsch H (2016) Mixture reduces climate sensitivity of Douglas-fir stem growth. For Ecol Manag. doi:10.1016/j.foreco.2016.06.020

    Google Scholar 

  • Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J. Climate 23(7):1696–1718. doi:10.1175/2009JCLI2909.1

    Article  Google Scholar 

  • Vitasse Y, Delzon S, Dufrêne E, Pontailler J-Y, Louvet J-M, Kremer A, Michalet R (2009) Leaf phenology sensitivity to temperature in European trees: do within-species populations exhibit similar responses? Agric For Meteorol 149(5):735–744. doi:10.1016/j.agrformet.2008.10.019

    Article  Google Scholar 

  • Wetterdienst D (2015) Grids germany-monthly: mean temperature and precipitation. ftp://ftp-cdc.dwd.de/pub/CDC/grids_germany/monthly/. Accessed 18 Mar 2016

  • Wetterdienst D (2016) Grids germany-annual: sunshine duration 1951-2016. ftp://ftp-cdc.dwd.de/pub/CDC/grids_germany/annual/sunshine_duration/. Accessed 18 Mar 2016

  • Zhang Y, Chen HYH, Reich PB (2012) Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. J Ecol 100(3):742–749. doi:10.1111/j.1365-2745.2011.01944.x

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank the Bavarian State Ministry for Food, Agriculture and Forestry for providing the Funds of W44 ‘Douglas-fir—European beech mixed and pure stands’ (Grant Number 7831-22206-2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Andreas Thurm.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by R. Matyssek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thurm, E.A., Biber, P. & Pretzsch, H. Stem growth is favored at expenses of root growth in mixed stands and humid conditions for Douglas-fir (Pseudotsuga menziesii) and European beech (Fagus sylvatica). Trees 31, 349–365 (2017). https://doi.org/10.1007/s00468-016-1512-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-016-1512-4

Keywords

Navigation