Skip to main content
Log in

Study of tension wood in the artificially inclined seedlings of Koelreuteria henryi Dummer and its biomechanical function of negative gravitropism

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Stem reorientation is critical to tree survival. With anatomical observation and strain measurement, the tension wood formation and biomechanical behavior were studied to gain insights into tree uprighting process.

Abstract

Tension wood plays a role in maintaining the mechanical stability of angiosperm trees. Both biological and physical aspects of tension wood are essential in understanding the mechanism of trunk or branch reorientation. In this study, we worked on both tension wood formation and its biomechanical function in artificially inclined 2-year-old Koelreuteria henryi seedlings. The tension wood formation and reorientation process of the trunk last for about 3 months. With pinning method, we confirmed that at the beginning of inclination the cambial zone including the vascular cambium and the developing normal wood fibers on the upper side of the inclined trunk perceives the onset of mechanical change and starts to produce G-fibers that generate a strong contractile released growth strain (RGS) for gravitropic correction. Stronger contractile RGS and more tension wood were found at the trunk base than at the half-height, suggesting that the trunk base plays a key role in trunk uprighting of K. henryi seedlings. The eccentric cambial growth in the tension wood side increases the efficiency of gravitropic correction and the compressive strains measured in the opposite wood of some inclined seedlings also help the upright movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alméras T, Fournier M (2009) Biomechanical design and long-term stability of trees: morphological and wood traits involved in the balance between weight increase and the gravitropic reaction. J Theor Biol 256:370–381

    Article  PubMed  Google Scholar 

  • Alméras T, Thibaut A, Gril J (2005) Effect of circumferential heterogeneity of wood maturation strain, modulus of elasticity and radial growth on the regulation of stem orientation in trees. Trees 19(4):457–467

    Article  Google Scholar 

  • Alméras T, Derycke M, Jaouen G, Beauchene J, Fournier M (2009) Functional diversity in gravitropic reaction among tropical seedlings in relation to ecological and developmental traits. J Exp Bot 60(15):4397–4410

    Article  PubMed  Google Scholar 

  • Archer RR (1986) Growth stresses and strains in tress. Springer, Berlin

    Google Scholar 

  • Baba K, Park YW, Kaku T, Kaida R, Takeuchi M, Yoshida M, Hosoo Y, Ojio Y, Okuyama T, Taniguchi T, Ohmiya Y, Kondo T, Shani Z, Shoseyov O, Awano T, Serada S, Norioka N, Norioka S, Hayashi T (2009) Xyloglucan for generating tensile stress to bend tree stem. Mol Plant 2(5):893–903

    Article  CAS  PubMed  Google Scholar 

  • Batianoff GN, Butler DW (2002) Assessment of invasive naturalised plants in south-east Queensland. Plant Prot Q 17:27–34

    Google Scholar 

  • Clair B, Alméras T, Pilate G, Jullien D, Sugiyama J, Riekel C (2011) Maturation stress generation in poplar tension wood studied by synchrotron radiation microdiffraction. Plant Physiol 155(1):562–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clair B, Alméras T, Sugiyama J (2006a) Compression stress in opposite wood of angiosperms: observations in chestnut, mani and poplar. Ann For Sci 63(5):507–510

    Article  Google Scholar 

  • Clair B, Alméras T, Yamamoto H, Okuyama T, Sugiyama J (2006b) Mechanical behavior of cellulose microfibrils in tension wood, in relation with maturation stress generation. Biophys J 91(3):1128–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clair B, Ruelle J, Beauchéne J, Prévost MF, Fournier M (2006c) Tension wood and opposite wood in 21 tropical rain forest species 1. Occurrence and efficiency of the G-layer. IAWA 27(3):329–338

    Google Scholar 

  • Coutand C, Fournier M, Moulia B (2007) The gravitropic response of poplar trunks: Key roles of prestressed wood regulation and the relative kinetics of cambial growth versus wood maturation. Plant Physiol 144(2):1166–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coutand C, Pot G, Badel E (2014) Mechanosensing is involved in the regulation of autostress levels in tension wood. Trees 28(3):687–697

    Article  Google Scholar 

  • Doğu AD, Grabner M (2010) A staining method for determining severity of tension wood. Turk J Agric For 34(5):381–392

    Google Scholar 

  • Donaldson L (2008) Microfibril angle: measurement, variation and relationships—a review. IAWA 29(4):345–386

    Article  Google Scholar 

  • Duncker P, Spiecker H (2008) Cross-sectional compression wood distribution and its relation to eccentric radial growth in Picea abies [L.] Karst. Dendrochronologia 26(3):195–202

    Article  Google Scholar 

  • Ewart AJ, Mason-Jones AJ (1906) The formation of red wood in conifers. Ann Bot 20:201–204

    Google Scholar 

  • Fang CH, Clair B, Gril J, Alméras T (2007) Transverse shrinkage in G-fibers as a function of cell wall layering and growth strain. Wood Sci Technol 41:659–671

    Article  CAS  Google Scholar 

  • Fang CH, Clair B, Gril J, Liu SQ (2008) Growth stresses are highly controlled by the amount of G-layer in poplar tension wood. IAWA 29(3):237–246

    Article  Google Scholar 

  • Fisher JB, Stevenson JW (1981) Occurrence of reaction wood in branches of dicotyledons and its role in tree architecture. Bot Gaz 142(1):82–95

    Article  Google Scholar 

  • Fournier M, Bailleres H, Chanson B (1994a) Tree biomechanics: growth, cumulative prestresses, and reorientations. Biomimetics 2(3):229–251

    Google Scholar 

  • Fournier M, Chanson B, Thibaut B, Guitard D (1994b) Measurements of residual growth strains at the stem surface. Ann For Sci 51(3):249–266

    Article  Google Scholar 

  • Gardiner B, Barnett J, Saranpa¨a P, Gril J (2014) The biology of reaction wood. Springer, Berlin, p 274

  • Gričar J, Zupančič M, Čufar K, Oven P (2007) Wood formation in Norway spruce (Picea abies) studied by pinning and intact tissue sampling method. Wood Res 52(2):1–9

    Google Scholar 

  • Grzeskowiak V, Sassus F, Fournier M (1996) Macroscopic staining, longitudinal shrinkage and growth strains of tension wood of poplar (Populus × euramericana cv I.214). Ann Sci For 53(6):1083–1097

  • Höster HR, Liese W (1966) On the occurrence of reaction tissue in roots and branches of dictyledons. Holzforschung 20:80–90

    Article  Google Scholar 

  • Huang YS, Hung LF, Kuo-Huang LL (2010) Biomechanical modeling of gravitropic response of branches: roles of asymmetric periphery growth strain versus self-weight bending effect. Trees 24(6):1151–1161

    Article  Google Scholar 

  • Jourez B, Avella-Shaw T (2003) Effet de la durée d’application d’un stimulus gravitationnel sur la formation de bois de tension et de bois opposé dans de jeunes pousses de peuplier (Populus euramericana cv ‘Ghoy’). Ann For Sci 60:31–41

    Article  Google Scholar 

  • Jullien D, Widmann R, Loup C, Thibaut B (2013) Relationship between tree morphology and growth stress in mature European beech stands. Ann For Sci 70(2):133–142

    Article  Google Scholar 

  • Kuĉera LJ, Philipson WR (1978) Growth eccentricity and reaction anatomy in branchwood of Pseudowintera colorata. Am J Bot 65(6):601–607

    Article  Google Scholar 

  • Kuo-Huang LL, Chen SS, Huang YS, Chen SJ, Hsieh YI (2007) Growth strains and related wood structures in the leaning trunks and branches of Trochodendron aralioides—a vessel-less dicotyledon. IAWA 28(2):211–222

    Article  Google Scholar 

  • Mäkinen H, Seo JW, Nöjd P, Schmitt U, Jalkanen R (2008) Seasonal dynamics of wood formation: a comparison between pinning, microcoring and dendrometer measurements. Eur J For Res 127(3):235–245

    Article  Google Scholar 

  • Matsuzaki J, Masumori M, Tange T (2007) Phototropic bending of non-elongating and radially growing woody stems results from asymmetrical xylem formation. Plant Cell Environ 30(5):646–653

    Article  PubMed  Google Scholar 

  • Mellerowicz EJ, Gorshkova TA (2012) Tensional stress generation in gelatinous fibres: a review and possible mechanism based on cell-wall structure and composition. J Exp Bot 63(2):551–565

    Article  CAS  PubMed  Google Scholar 

  • Mellerowicz EJ, Immerzeel P, Hayashi T (2008) Xyloglucan: the molecular muscle of trees. Ann Bot 102(5):659–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moulia B, Coutand C, Lenne C (2006) Posture control and skeletal mechanical acclimation in terrestrial plants: implications for mechanical modeling of plant architecture. Am J Bot 93(10):1477–1489

    Article  PubMed  Google Scholar 

  • Mukogawa Y, Nobuchi T, Sahri MJ (2003) Tension wood anatomy in artificially induced leaning stems of some tropical trees. For Res 75:27–33

    Google Scholar 

  • Nishikubo N, Takahashi J, Roos AA, Derba-Maceluch M, Piens K, Brumer H, Teeri TT, Stalbrand H, Mellerowicz EJ (2011) Xyloglucan endo-transglycosylase-mediated xyloglucan rearrangements in developing wood of hybrid aspen. Plant Physiol 155(1):399–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohashi Y, Sahri MH, Yoshizawa N, Itoh T (2001) Annual rhythm of xylem growth in rubberwood (Hevea brasiliensis) trees grown in Malaysia. Holzforschung 55(2):151–154

    Article  CAS  Google Scholar 

  • Okuyama T, Yamamoto H, Yoshida M, Hattori Y, Archer RR (1994) Growth stresses in tension wood—role of microfibrils and lignification. Ann Sci For 51(3):291–300

    Article  Google Scholar 

  • Onaka F (1949) Studies on compression- and tension-wood. Mokuzai Gakkaishi 1:1–88

    Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing

  • Ruelle J, Beauchene J, Yamamoto H, Thibaut B (2011) Variations in physical and mechanical properties between tension and opposite wood from three tropical rainforest species. Wood Sci Technol 45(2):339–357

    Article  CAS  Google Scholar 

  • Ruelle J, Yamamoto H, Thibaut B (2007a) Growth stresses and cellulose structural parameters in tension and normal wood from three tropical rainforest angiosperms species. Bioresources 2(2):235–251

    CAS  Google Scholar 

  • Ruelle J, Yoshida M, Clair B, Thibaut B (2007b) Peculiar tension wood structure in Laetia procera (Poepp.) Eichl. (Flacourtiaceae). Trees 21(3):345–355

    Article  Google Scholar 

  • Schmitt U, Jalkanen R, Eckstein D (2004) Cambium dynamics of Pinus sylvestris and Betula spp. in the northern boreal forest in Finland. Silva Fenn 38(2):167–178

    Article  Google Scholar 

  • Scurfield G (1972) Histochemistry of reaction wood cell walls in two species of Eucalyptus and in Tristania conferta R. BR. Aust J Bot 20:9–26

    Article  CAS  Google Scholar 

  • Scurfield G (1973) Reaction wood: its structure and function: lignification may generate the force active in restoring the trunks of leaning trees to the vertical. Science 179(4074):647–655

    Article  CAS  PubMed  Google Scholar 

  • Sierra-De-Grado R, Pando V, Martinez-Zurimendi P, Penalvo A, Bascones E, Moulia B (2008) Biomechanical differences in the stem straightening process among Pinus pinaster provenances. A new approach for early selection of stem straightness. Tree Physiol 28(6):835–846

    Article  PubMed  Google Scholar 

  • Sinnott EW (1952) Reaction wood and the regulation of tree Form. Am J Bot 39(1):69–78

    Article  Google Scholar 

  • Spurr A (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    Article  CAS  PubMed  Google Scholar 

  • Thibaut B, Grila J, Fournier M (2001) Mechanics of wood and trees: some new highlights for an old story. C R Acad Sci Paris Série II b 329(9):701–716

    Google Scholar 

  • Timell TE (1986) Compression wood in gymnosperms, vol 2. Springer, Berlin, pp 748–754, 861–864

  • Tsai CC, Hung LF, Chien CT, Chen SJ, Huang YS, Kuo-Huang LL (2012) Biomechanical features of eccentric cambial growth and reaction wood formation in broadleaf tree branches. Trees 26(5):1585–1595

    Article  Google Scholar 

  • Wang Y, Gril J, Sugiyama J (2009) Variation in xylem formation of Viburnum odoratissimum var. awabuki: growth strain and related anatomical features of branches exhibiting unusual eccentric growth. Tree Physiol 29(5):707–713

    Article  CAS  PubMed  Google Scholar 

  • Wardrop AB, Dadswell HE (1948) The nature of reaction wood. I. The sturcture and properties of tension wood fibres. Aust J Sci Res 1:1–16

    Google Scholar 

  • Wardrop AB, Dadswell HE (1950) The nature of reaction wood II. The cell wall organization of compression wood tracheids. Aust. J Biol Sci 3(1):1–13

    Google Scholar 

  • Wardrop AB, Dadswell HE (1955) The nature of reaction wood. IV. Variations in cell wall organization of tension wood fibres. Aust J Bot 3(2):177–189

    Article  Google Scholar 

  • Washusen R, Ilic J, Waugh G (2003a) The relationship between longitudinal growth strain and the occurrence of gelatinous fibers in 10 and 11-year-old Eucalyptus globulus Labill. Holz Roh Werkst 61(4):299–303

    Article  Google Scholar 

  • Washusen R, Ilic J, Waugh G (2003b) The relationship between longitudinal growth strain, tree form and tension wood at the stem periphery of ten- to eleven-year-old Eucalyptus globulus Labill. Holzforschung 57(3):308–316

    Article  CAS  Google Scholar 

  • White DJB (1962) Tension wood in a branch of sassafras. J I Wood Sci 10:74–80

    Google Scholar 

  • Wilson BF, Archer RR (1977) Reaction wood—induction and mechanical action. Annu Rev Plant Phys 28:23–43

    Article  Google Scholar 

  • Wilson BF, Archer RR (1979) Tree design: some biological solutions to mechanical problems. Bioscience 29(5):293–298

    Article  Google Scholar 

  • Wolter KE (1968) A new method for marking xylem growth. For Sci 14(1):102–104

    Google Scholar 

  • Yoshida M, Okuda T, Okuyama T (2000) Tension wood and growth stress induced by artificial inclination in Liriodendron tulipifera Linn. and Prunus spachiana Kitamura f. ascendens Kitamura. Ann For Sci 57(8):739–746

  • Yoshimura K, Hayshi S, Itoh T (1981) Studies on the improvement of the pinning method for marking xylem growth I. Minute examination of pin marks in taeda pine and other species. Wood Res 67:1–16

    Google Scholar 

  • Yoshizawa N, Satoh M, Yokota S, Idei T (1993a) Formation and structure of reaction wood in Buxus microphylla var. insularis Nakai. Wood Sci Technol 27:1–10

    Google Scholar 

  • Yoshizawa N, Watanabe N, Yokota S, Idei T (1993b) Distribution of guaiacyl and syringyl lignins in normal and compression wood of Buxus microphylla var. insularis Nakai. IAWA 14(2):139–151

Download references

Acknowledgments

The authors would like to thank Dr. Ching-Te Chien and Miss Chin-Mei Lee for technical support. This study was funded by the National Science Council, Taiwan through research project NSC-97-2313-B-002-043-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-Long Kuo-Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Y. Sano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hung, LF., Tsai, CC., Chen, SJ. et al. Study of tension wood in the artificially inclined seedlings of Koelreuteria henryi Dummer and its biomechanical function of negative gravitropism. Trees 30, 609–625 (2016). https://doi.org/10.1007/s00468-015-1304-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-015-1304-2

Keywords

Navigation