Skip to main content
Log in

Genetic variation in wild Prunus L. subgen. Cerasus germplasm from Iran characterized by nuclear and chloroplast SSR markers

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

The selected material of Cerasus subgen. will be useful for conservation and management and important for Prunus breeding programs.

Abstract

Knowledge of relationships among the cultivated and wild species of Cerasus is important for recognizing gene pools in germplasm and developing effective conservation and management strategies. In this study, genetic and phylogenetic relationships of wild Cerasus subgenus species naturally growing in Iran, including P. avium (mazzard), P. mahaleb, P. brachypetala, P. incana, P. yazdiana, P. microcarpa subsp. microcarpa, P. microcarpa subsp. diffusa and P. pseudoprostrata and three commercial species, sweet cherry (P. avium), sour cherry (P. cerasus) and duke cherry (P. x gondouinii) was investigated based on 16 nuclear SSR and five chloroplast SSR. Very high level of polymorphism was detected among the studied species based these molecular markers, indicating high inter and intraspecific genetic variation. Inter and intraspecific genetic similarity coefficients varied from 0.00 to 1.00, indicating high genetic variation in studied germplasm. These two molecular markers types could distinguish differences between all species so that accessions of each species were placed into a single group. Based on molecular markers, a close correlation was observed between intraspecific variation and geographical distribution. Furthermore, based on nuSSR primers, most wild species showed 2–4 alleles and may be tetraploid. In conclusion, the conservation of these highly diverse native populations of Iranian wild Cerasus germplasm is recommended for future breeding activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antonius K, Aaltonen M, Uosukainen M, Hurme T (2012) Genotypic and phenotypic diversity in Finnish cultivated sour cherry (Prunus cerasus L.). Genet Resour Crop Evol 59:375–388

    Article  Google Scholar 

  • Aranzana MJ, Garcia-Mas J, Carbo J, Arus P (2002) Development and variability analysis of microsatellite markers in peach. Plant Breed 121:87–92

    Article  CAS  Google Scholar 

  • Arnold ML, Robinson JJ, Buckner CM, Bennet BD (1992) Pollen dispersal and interspecific gene flow in Louisiana irises. Heredity 68:399–404

    Article  Google Scholar 

  • Avramidou I, Ganopoulos V, Aaavanopoulos FA (2010) DNA fingerprinting of elite Greek wild cherry (Prunus avium L.) genotypes using microsatellite markers. Forestry 83:527–533

    Article  Google Scholar 

  • Beaver JA, Iezzoni AF, Ramm CW (1995) Isozyme diversity in sour, sweet and ground cherry. Theor Appl Genet 90:847–852

    Article  CAS  PubMed  Google Scholar 

  • Birky CW (1988) Evolution and variation in plant chloroplast and mitochondrial genomes. In: Gottlieb L, Jain S (eds) Plant evolutionary biology. Chapman and Hall, London, pp 23–53

    Chapter  Google Scholar 

  • Bouhadida M, Martin JP, Eremin G, Pinochet J, Moreno MA, Gorgocena Y (2007) Chloroplast DNA diversity in Prunus and its implication on genetic relationships. J Am Soc Hortic Sci 132:670–679

    CAS  Google Scholar 

  • Bouhadida M, Casas AM, Gonzalo MJ, Arus P (2009) Molecular characterization and genetic diversity of Prunus rootstocks. Sci Hortic 120:237–245

    Article  CAS  Google Scholar 

  • Brettin TS, Karle R, Crowe EL, Iezzoni F (2000) Chloroplast inheritance and DNA variation in sweet, sour and ground cherry. Heredity 91:74–79

    Google Scholar 

  • Cantini C, Iezzoni A, Lamboy AF, Boritzki M, Struss D (2001) DNA fingerprinting of tetraploid cherry germplasm using simple sequence repeats. J Am Soc Hortic Sci 126:205–209

    CAS  Google Scholar 

  • Cipriani G, Lot G, Huang WG, Marrazzo MT, Peterlunger E, Testolin R (1999) AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L) Batsch]: isolation, characterisation and cross-species amplification in Prunus. Theor Appl Genet 99:65–72

    Article  CAS  Google Scholar 

  • Clarke JB, Tobutt KR (2003) Development and characterization of polymorphic microsatellites from Prunus avium ‘Napoleon’. Mol Ecol Notes 3:578–580

    Article  CAS  Google Scholar 

  • Clarke JB, Tobutt KR (2009) A Standard Set of Accessions, Microsatellites and Genotypes for Harmonising the Fingerprinting of Cherry Collections for the ECPGR. Acta Hortic 814:615–619

    Google Scholar 

  • Decroocq V, Hagen LS, Favé MG, Eyquard JP, Pierronnet A (2004) Microsatellite markers in the hexaploid Prunus domestica species and parentage lineage of three European plum cultivars using nuclear and chloroplast simple-sequence repeats. Mol Breed 13:135–142

    Article  CAS  Google Scholar 

  • Dirlewanger E, Cosson P, Tavaud M, Aranzana MJ, Poizat C, Zanetto A, Arus P, Laigret F (2002) Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor Appl Genet 105:127–138

    Article  CAS  PubMed  Google Scholar 

  • Downey SL, Iezzoni AF (2000) Polymorphic DNA markers in black cherry (Prunus serotina) identified using sequences from sweet cherry, peach, and sour cherry. J Am Soc Hortic Sci 125:76–80

    CAS  Google Scholar 

  • Ercisli S, Agar G, Yildirim N, Duralija B, Vokurka A, Karlidag H (2011) Genetic diversity in wild sweet cherries (Prunus avium) in Turkey revealed by SSR markers. Genet Mol Res 10:1211–1219

    Article  CAS  PubMed  Google Scholar 

  • Freimer NB, Slatkin M (1996) Microsatellites: evolution and mutational processes. Variation in the human genome. Ciba Foundation Symposium, vol 197. Ciba Foundation, London, pp 51–72

    Google Scholar 

  • Ganopoulos IV, Avramidou E, Fasoula DA, Diamantidis G, Aravanopoulos FA (2010) Assessing inter- and intra-cultivar variation in Greek Prunus avium by SSR markers. Plant Genet Res: Charact Util 8:242–248

    Article  CAS  Google Scholar 

  • Haider A (2011) Chloroplast-specific universal primers and their uses in plant studies. Biol Plant 55:225–236

    Article  CAS  Google Scholar 

  • Harris SA, Ingram R (1991) Chloroplast DNA and biosystematics—the effects of intraspecific diversity and plastid transmission. Taxon 40:393–412

    Article  Google Scholar 

  • Heinze B (1999) Molecular genetic investigations in wild and cultivated Prunus avium in Austria and beyond. In: Ritter E, Espinel S (eds) Proceedings of applications of biotechnology to forest genetics. International Congress, Vitoria-Gasteiz, pp 77–80

    Google Scholar 

  • Hormaza JI (2002) Molecular characterization and similarity relationships among apricot (Prunus armeniaca L.) genotypes using simple sequence repeats. Theor Appl Genet 104:321–328

    Article  CAS  PubMed  Google Scholar 

  • Horvath A, Zanetto A (2008) Origin of sour cherry (Prunus cerasus L.) genomes. Acta Hortic 795:131–136

    CAS  Google Scholar 

  • Iezzoni AF, Schmidt H, Albertini A (1990) Cherries (Prunus). In: Moore JN, Ballington JR Jr (eds) Genetic resources of temperate fruit and nut crops, vol 1. ISHS, Wageningen, pp 111–173

    Google Scholar 

  • Khadivi-Khub A, Zamani Z, Fatahi MR (2012) Multivariate analysis of Prunus subgen. Cerasus germplasm in Iran using morphological variables. Genet Resour Crop Evol 59:909–926

    Article  Google Scholar 

  • Ma H, Olsen R, Pooler M (2009) Evaluation of flowering cherry species, hybrids, and cultivars using simple sequence repeat markers. J Am Soc Hortic Sci 134:435–444

    Google Scholar 

  • Mantel NA (1967) The detection of disease clustering gene and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Mariette S, Tavaud M, Arunyawat U, Capdeville G, Millan M, Salin F (2010) Population structure and genetic bottleneck in sweet cherry estimated with SSRs and the gametophytic self-incompatibility locus. BMC Genet 11:77–86

    Article  PubMed Central  PubMed  Google Scholar 

  • Matus IA, Hayes PM (2002) Genetic diversity in three groups of barley germplasm assessed by simple sequence repeats. Genome 45:1095–1106

    Article  CAS  PubMed  Google Scholar 

  • Mohanty A, Martin JP, Aguinagaldo I (2001a) Chloroplast DNA study in wild population and some cultivars of Prunus avium. Theor Appl Genet 103:112–117

    Article  CAS  Google Scholar 

  • Mohanty A, Martinn JP, Aguinagalde I (2001b) A population genetic analysis of chloroplast DNA in wild populations of Prunus avium L. in Europe. Heredity 87:421–427

    Article  CAS  PubMed  Google Scholar 

  • Mohanty A, Martin JP, Gonzaalez LM, Aguinagaldo I (2003) Association between chloroplast DNA and mitochondrial DNA haplotypes in Prunus spinosa L. (Rosaceae) populations across Europe. Ann Bot 92:749–755

    Article  CAS  PubMed  Google Scholar 

  • Mozaffarian V (2002) Studies on the flora of Iran, new species and new records. Pak J Bot 34:391–396

    Google Scholar 

  • Nas MN, Bolek Y, Adem B (2011) Genetic diversity and phylogenetic relationships of Prunus microcarpa C.A. Mey. subsp. tortusa analyzed by simple sequence repeats (SSRs). Sci Hortic 127:220–227

    Article  CAS  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohta S, Nishitani C, Yamamoto T (2005a) Chloroplast microsatellites in Prunus, Rosaseae. Mol Ecol Notes 5:837–840

    Article  CAS  Google Scholar 

  • Ohta S, Katsuki T, Tanaka T, Hayashi T, Sato Y, Yamamoto T (2005b) Genetic variation in flowering cherries (Prunus subgenus Cerasus) characterized by SSR markers. Breed Sci 55:415–424

    Article  CAS  Google Scholar 

  • Ohta S, Yamamoto T, Nishitani C, Katsuki T, Iketani H (2007) Phylogenetic relationships among Japanese flowering cherries (Prunus subgenus Cerasus) based on nucleotide sequences of chloroplast DNA. Plant Syst Evol 263:209–225

    Article  CAS  Google Scholar 

  • Olden EJ, Nybom N (1968) On the origin of Prunus cerasus L. Heredity 59:327–345

    Article  Google Scholar 

  • Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Comp Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  • Palmer JD (1987) Chloroplast DNA evolution and biosystematics uses of chloroplast DNA variation. Am Nat 130:S6–S29

    Article  CAS  Google Scholar 

  • Panda S, Martin JM, Aguinagalde I (2003a) Chloroplast DNA study in sweet cherry cultivars using PCR-RFLP method. Gen Res Crop Evol 50:489–495

    Article  CAS  Google Scholar 

  • Panda S, Martin JP, Aguinagalde I, Mohanty A (2003b) Chloroplast DNA variation in cultivated and wild Prunus avium L.: a comparative study. Plant Breed 122:92–94

    Article  CAS  Google Scholar 

  • Pavlicek A, Hrda S, Flegr J (1999) FreeTree—Freeware program for construction of phylogenetic trees on the basis of distance data and bootstrap/jackknife analysis of the tree robustness. Folia Biol (Praha) 45:97–99

    CAS  Google Scholar 

  • Powell W, Morgante M, McDevitt R, Vendramin GC, Rafalski JA (1996) Polymorphic simple sequence repeat regions in chloroplast genomes: applications to the population genetics of pines. Proc Natl Acad Sci USA 92:7759–7763

    Article  Google Scholar 

  • Provan J, Powell W, Hollingsworth PM (2001) Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends Ecol Evol 16:142–147

    Article  PubMed  Google Scholar 

  • Rechinger KH (1969) Rosaceae. In: Rechinger KH (ed) Flora Iranica, vol 66. Akademische Druck-U, Austria, pp 187–203

    Google Scholar 

  • Rehder A (1940) Manual of cultivated trees and shrubs hardy in North America exclusive for subtropical and warmer temperate regions, 2nd edn. Macmillan, New York

    Google Scholar 

  • Rohlf FJ (2000) NTSYS-pc Numerical Taxonomy and Multivariate Analysis System. Version 2.1. Exeter Software, Setauket, NY

  • Romesburg HC (1990) Cluster Analysis for Researchers. Krieger Publishing Company, Malabar

    Google Scholar 

  • Santi F, Lemoine M (1990) Genetic markers for Prunus avium L. 2. Clonal identifications and discrimination from P. cerasus and P. cerasus × P. avium. Annales des Sciences Forestières 47:219–227

    Article  Google Scholar 

  • Schueler S, Tusch A, Schuster M, Ziegenhagen B (2003) Characterization of microsatellites in wild and sweet cherry (Prunus avium L.) markers for individual identification and reproductive processes. Genome 46:95–102

    Article  CAS  PubMed  Google Scholar 

  • Sefc KM, Lopez MS, Lefort F, Botta R (2000) Microsatellites variability in grapevine cultivars from different European regions and evaluation of assignment testing to assess the geographic origin of cultivars. Theor Appl Genet 100:498–505

    Article  Google Scholar 

  • Sneller CH, Miles JW, Hoyt JM (1997) Agronomic performance of soybean plant introductions and their genetic similarity to elite lines. Crop Sci 37:1595–1600

    Article  Google Scholar 

  • Sosinski B, Gannavarapu M, Hager LD, Beck LE, King GJ, Ryder CD, Rajapakse S, Baird WV, Ballard RE, Abbott AG (2000) Characterisation of microsatellite markers in peach [Prunus persica (l.) Batsch]. Theor Appl Genet 101:421–428

    Article  CAS  Google Scholar 

  • Steinkellner H, Lexer C, Turetschek E, Glossl J (1997) Conservation of (GA)n microsatellite loci between Quercus species. Mol Ecol 6:1189–1194

    Article  CAS  Google Scholar 

  • Struss D, Boritzki M, Karle R, Iezzoni AF (2002) Microsatellite markers differentiate eight Giessen cherry rootstocks. Hortic Sci 37:191–193

    CAS  Google Scholar 

  • Struss D, Ahmad R, Southwick SM, Boritzki M (2003) Analysis of sweet cherry (Prunus avium L) cultivars using SSR and AFLP. J Am Soc Hortic Sci 128:904–909

    CAS  Google Scholar 

  • Tavaud M, Zanetto A, David JL, Laigret F, Dirlewanger E (2004) Genetic relationships between diploid and allotetraploid cherry species (Prunus avium, Prunus x gondouinii and Prunus cerasus. Heredity 93:631–638

    Article  CAS  PubMed  Google Scholar 

  • Testolin R, Marrazzo T, Cipriani G, Quarta R, Verde I, Dettori MT, Pancaldi M, Sansavini S (2000) Microsatellite DNA in peach (Prunus persica (L.) Batsch) and its use in fingerprinting and testing the genetic origin of cultivars. Genome 43:512–520

    Article  CAS  PubMed  Google Scholar 

  • Turkec A, Muge S, Berthold H (2006) Identification of sweet cherry cultivars (Prunus avium L.) and analysis of their genetic relationship by chloroplast sequence-characterized amplified regions (cpSCAR). Genet Res Crop Evol 53:1653–1654

    Article  Google Scholar 

  • Turkoglu Z, Bilgener S, Ercisli S, Bakir M, Koc A, Akbulut M, Gercekcioglu R, Gunes M, Esitken A (2010) Simple sequence repeat-based assessment of genetic relationships among Prunus rootstocks. Genetics Mol Res 9:2156–2165

    Article  CAS  Google Scholar 

  • Tzedakis PC, Lawson IT, Frogley MR, Hewitt GM (2002) Buffered tree population changes in Quaternary refugium: evolutionary implication. Science 292:267–269

    Google Scholar 

  • Vaughan SP, Russell K (2004) Characterization of novel microsatellites and development of multiplex PCR for large-scale population studies in wild cherry, Prunus avium. Mol Ecol Notes 4:429–431

    Article  CAS  Google Scholar 

  • Watkins R (1976) Cherry, plum, peach, apricot and almond. In: Simmonds NW (ed) Evolution of crop plants. Longman, London, UK, pp 242–247

    Google Scholar 

  • Wen J, Berggren ST, Lee CH, Ickert S (2008) Phylogenetic inferences in Prunus (Rosaceae) using chloroplast ndhF and nuclear ribosomal ITS sequences. J Syst Evol 46:322–332

    Google Scholar 

  • Wünsch A (2009) Cross-transferable polymorphic SSR loci in Prunus species. Sci Hortic 120:348–352

    Article  Google Scholar 

  • Wünsch A, Hormaza JI (2002) Molecular characterisation of sweet cherry (Prunus avium L.) genotypes using peach (Prunus persica (L.) Batsch) SSR sequences. Heredity 89:56–63

    Article  PubMed  Google Scholar 

  • Wünsch A, Hormaza JI (2004) Molecular evaluation of genetic diversity and S-allele composition of local Spanish sweet cherry (Prunus avium L.) cultivars. Genet Resour Crop Evol 51:635–641

    Article  Google Scholar 

  • Xuan H, Neumueller M, Schlottmann P (2010) Approaches to determine the origin of European plum (Prunus domestica) based on nucleotide sequences of chloroplast DNA. In: Proceedings of the 28th international horticultural congress, Lisboa, Portugal, 22–27 August

  • Zeinalabedini M, Majourhat K, Khayam-Nekoui M, Grigorian V, Torchi M, Dicenta F, Martinez-Gomez P (2008) Comparison of the use of morphological, protein and DNA markers in the genetic characterization of Iranian wild Prunus species. Sci Hortic 116:80–88

    Article  CAS  Google Scholar 

  • Zeinalabedini M, Khayam-Nekoui M, Grigorian V, Gradziel TM, Martinez-Gomez P (2010) The origin and dissemination of the cultivated almond as determined by nuclear and chloroplast SSR marker analysis. Sci Hortic 125:593–601

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank the Ministry of Science, Research and Technology of the Islamic Republic of Iran and Center of Excellence for Temperate Fruit Research in University of Tehran for financial assistance. We also thank CITA (Centro de Investigación y Tecnología Agroalimentaria de Aragón), Zaragoza, in particular, Fruit-Tree Department, for providing the facilities to do this research. We gratefully acknowledge Teresa Bespín for excellent assistance of technical markers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdollah Khadivi-Khub.

Additional information

Communicated by F. Canovas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khadivi-Khub, A., Zamani, Z., Fattahi, R. et al. Genetic variation in wild Prunus L. subgen. Cerasus germplasm from Iran characterized by nuclear and chloroplast SSR markers. Trees 28, 471–485 (2014). https://doi.org/10.1007/s00468-013-0964-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-013-0964-z

Keywords

Navigation