Skip to main content

Advertisement

Log in

Temperature variation among mangrove latitudinal range limits worldwide

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Mangroves are mainly tropical tree species that occur on either side of the equator and because temperature decreases with increasing latitude, the latitudinal limits of mangroves are expected to be mainly controlled by temperature-related drivers. Here, we hypothesized that the mangrove genera (Avicennia and Rhizophora) have the same limiting temperature at all of their upper latitudinal limits at the global scale. We first derived six parameters from monthly mean sea surface temperature (SST) and air temperature (AT). Furthermore, we investigated whether the variation in these temperature parameters is related (i) to the position of the limit, (ii) to specific temperature requirements of congeneric species and/or (iii) to aridity. All temperature-based parameters derived from AT and SST are highly variable among the upper latitudinal limits of Avicennia and Rhizophora. Hence, we found no common isotherms to characterize the limits of the two mangrove genera, which contradict previous studies. The high temperature variation among limits can be due to partial range filling towards the latitudinal limits. This is supported by the higher warmest month temperatures at the latitudinal limits of the northern hemisphere as compared to the southern hemisphere. However, temperature parameters at limits, with no or less than 250 km of available poleward coast, are not different from other limits, and adult tree height at the limits is not correlated with the temperature-based variables. Mean air temperature is warmer at limits with an arid climate, suggesting mechanisms of compensation towards higher temperatures when Avicennia and Rhizophora have to cope with both aridity and low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Recent inventories reported a current surface ranging from 137,760 km² (Giri et al. 2011) to 152,000 km² (according to Spalding et al. 2010). However, the original mangrove surface is estimated to have been more than 200,000 km² before deforestation by man (Valiela et al. 2001; FAO 2003; Duke et al. 2007); this value is two orders of magnitude less than the surface covered by tropical rainforest (Millennium Ecosystem Assessment 2005).

References

  • Austin MP, Heyligers PC (1989) Vegetation survey design for conservation—gradsect sampling of forests in Northeastern New-South Wales. Biol Conserv 50:13–32

    Article  Google Scholar 

  • Ball MC (1988) Salinity tolerance in the mangroves Aegiceras corniculatum and Avicennia marina. I. Water use in relation to growth, carbon partitioning and salt balance. Aust J Plant Physiol 15:447–464

    Article  Google Scholar 

  • Ball MC (1998) Mangrove species richness in relation to salinity and waterlogging: a case study along the Adelaide River floodplain, northern Australia. Global Ecol Biogeogr Lett 7:73–82

    Article  Google Scholar 

  • Ball MC, Farquhar GD (1984) Photosynthetic and stomatal responses to two mangrove species, Aegiceras corniculatum and Avicennia marina, to long term salinity and humidity conditions. Plant Physiol 74:1–6

    Article  PubMed  CAS  Google Scholar 

  • Barbier EB (2007) Valuing ecosystem services as productive inputs. Econ Policy 22:178–229

    Article  Google Scholar 

  • Barry RG, Chorley RJ (2004) Atmosphere, weather and climate, 8th edn. Routledge, London 462

    Google Scholar 

  • Barth H (1982) The biogeography of mangroves. In: Sen DN, Rajpurohit KS (eds) Contributions to the ecology of halophytes. Tasks in vegetation science, vol 2, pp 35–60

  • Chapman V (1977) Introduction. Ecosyst World: Wet Coastal Ecosyst 1:1–29

    Google Scholar 

  • Clough BF (1984) Growth and salt balance of the mangroves Avicennia marina (Forsk) Vierh and Rhizophora stylosa Griff in relation to salinity. Aust J Plant Physiol 11:419–430

    Article  CAS  Google Scholar 

  • Colwell RK, Rangel TF (2009) Hutchinson’s duality: the once and future niche. Proc Natl Acad Sci 106:19651–19658

    Article  PubMed  CAS  Google Scholar 

  • Dahdouh-Guebas F, Mathenge C, Kairo JG, Koedam N (2000) Utilization of mangrove wood products around Mida Creek (Kenya) amongst subsistence and commercial users. Econ Bot 54:513–527

    Article  Google Scholar 

  • Dahdouh-Guebas F, De Bondt R, Abeysinghe PD, Kairo JG, Cannicci S, Triest L, Koedam N (2004) Comparative study of the disjunct zonation pattern of the grey mangrove Avicennia marina (Forsk.) Vierh. in Gazi Bay (Kenya). Bull Marine Sci 74:237–252

    Google Scholar 

  • Dahdouh-Guebas F, Jayatissa LP, Di Nitto D, Bosire JO, Lo Seen D, Koedam N (2005) How effective were mangroves as a defence against the recent tsunami? Curr Biol 15:443–447

    Article  Google Scholar 

  • Day TA, Heckathorn SA, DeLucia EH (1991) Limitations of photosynthesis in Pinus taeda L (loblolly pine) at low soil temperatures. Plant Physiol 96:1246–1254

    Article  PubMed  CAS  Google Scholar 

  • De Lange WP, De Lange PJ (1994) An appraisal of factors controlling the latitudinal distribution of mangrove (Avicennia Marina Var Resinifera) in New Zealand. J Coastal Res 10:539–548

    Google Scholar 

  • DeLucia EH (1986) Effect of low root temperature on net photosynthesis, stomatal conductance and carbohydrate concentration in Engelmann spruce (Picea engelmannii Parry ex Engelm.) seedlings. Tree Physiol 2:143–154

    PubMed  CAS  Google Scholar 

  • Dexler JZ (2001) Maximum Longevities of Rhizophora apiculata and R. mucronata. Propagules Pacif Sci 55:17–22

    Article  Google Scholar 

  • Duke NC (2006) Rhizophora apiculata, R. mucronata, R. stylosa, R. × annamalai, R. × lamarckii (Indo-West Pacific stilt mangroves), ver. 2.1. In: Elevitch CR (ed) Species profiles for pacific island agroforestry. Permanent Agriculture Resources (PAR), Holualoa, Hawaii

    Google Scholar 

  • Duke NC, Allen JA (2006) Rhizophora mangle, R. samoensis, R. racemosa, R. × harrisonii (Atlantic–East Pacific red mangroves), ver. 2.1. In: Elevitch CR (ed) Species profiles for pacific island agroforestry. Permanent Agriculture Resources (PAR), Holualoa, Hawaii

    Google Scholar 

  • Duke NC, Ball MC, Ellison JC (1998) Factors influencing biodiversity and distributional gradients in mangroves. Global Ecol Biogeogr Lett 7:27–47

    Article  Google Scholar 

  • Duke NC, Meynecke JO, Dittmann S, Ellison AM, Anger K, Berger U, Cannicci S, Diele K, Ewel KC, Field CD, Koedam N, Lee SY, Marchand C, Nordhaus I, Dahdouh-Guebas F (2007) A world without mangroves? Science 317:41–42

    Article  PubMed  CAS  Google Scholar 

  • Ellison AM (2002) Macroecology of mangroves: large-scale patterns and processes in tropical coastal forests. Trees Struct Funct 16:181–194

    Article  Google Scholar 

  • Ellison AM, Farnsworth EJ, Merkt RE (1999) Origins of mangrove ecosystems and the mangrove biodiversity anomaly. Glob Ecol Biogeogr 8:95–115

    Google Scholar 

  • FAO (2003) Status and trends in mangrove area extent worldwide. In: Wilkie ML, Fortuna S Forest Resources Assessment Working Paper, 63. Forest Resources Division. FAO, Rome

  • FAO (2007) Mangroves of Asia 1980–2005: country reports. In: Wilkie ML, Fortuna S Forest Resources Assessment Working Paper, 137. Forest Resources Division. FAO, Rome

  • Feller IC, Lovelock CE, Berger U, McKee KL, Joye SB, Ball MC (2010) Biocomplexity in mangrove ecosystems. Annu Rev Marine Sci 2:395–417

    Article  CAS  Google Scholar 

  • Fonti P, Solomonoff N, Garcia-González I (2007) Earlywood vessels of Castanea sativa record temperature before their formation. New Phytol 173:562–570

    Article  PubMed  Google Scholar 

  • Gaston KJ (2003) The structure and dynamics of geographic ranges. Oxford University Press, Oxford 266

    Google Scholar 

  • Giesen W, Wulffraat S, Zieren M and Scholten L (2006) Mangrove guidebook for Southeast Asia. FAO and Wetlands International

  • Gilman EL, Ellison J, Duke NC, Field C (2008) Threats to mangroves from climate change and adaptation options: a review. Aquat Bot 89:237–250

    Article  Google Scholar 

  • Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masek J, Duke N (2011) Status and distribution of mangrove forests of the world using earth observation satellite data. Glob Ecol Biogeogr 20:154–159

    Article  Google Scholar 

  • Gričar J, Zupančič M, Čufar K, Koch G, Schmitt U, Oven P (2006) Effect of Local Heating and Cooling on Cambial Activity and Cell Differentiation in the Stem of Norway Spruce (Picea abies). Ann Bot 97:943–951

    Article  PubMed  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  • Hao GY, Jones TJ, Luton C, Zhang YJ, Manzane E, Scholz FG, Bucci SJ, Cao KF, Goldstein G (2009) Hydraulic redistribution in dwarf Rhizophora mangle trees driven by interstitial soil water salinity gradients: impacts on hydraulic architecture and gas exchange. Tree Physiol 29:697–705

    Article  PubMed  Google Scholar 

  • Hertel D, Wesche K (2008) Tropical moist Polylepis stands at the treeline in East Bolivia: the effect of elevation on stand microclimate, above- and below-ground structure, and regeneration. Trees Struct Funct 22:303–315

    Article  Google Scholar 

  • Kleypas JA, McManus JW, Menez LAB (1999) Environmental limits to coral reef development: where do we draw the line? Am Zool 39:146–159

    Google Scholar 

  • Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31:713–732

    Article  Google Scholar 

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Koppen–Geiger climate classification updated. Meteorol Z 15:259–263

    Article  Google Scholar 

  • Krauss KW, Lovelock CE, McKee KL, Lopez-Hoffman L, Ewe SML, Sousa WP (2008) Environmental drivers in mangrove establishment and early development: a review. Aquat Bot 89:105–127

    Article  Google Scholar 

  • Li QS, Feng Q, Zhai LX (2010) Study of the height growth dynamic based on tree-ring data in Populus euphratica from the lower reach of the Heihe River, China. Dendrochronologia 28:49–64

    Article  Google Scholar 

  • Lovelock CE, Ball MC, Choat B, Engelbrecht BMJ, Holbrook NM, Feller IC (2006) Linking physiological processes with mangrove forest structure: phosphorus deficiency limits canopy development, hydraulic conductivity and photosynthetic carbon gain in dwarf Rhizophora mangle. Plant Cell Environ 29:793–802

    Article  PubMed  CAS  Google Scholar 

  • Lugo AE, Zucca CP (1977) The impact of low temperature stress on mangrove structure and growth. Tropical Ecol 18:149–161

    Google Scholar 

  • Macnae W (1963) Mangrove swamps in South-Africa. J Ecol 51:1–25

    Article  Google Scholar 

  • McKee KL (1993) Soil physicochemical patterns and mangrove species distribution—reciprocal effects. J Ecol 81:477–487

    Article  Google Scholar 

  • Medina E, Francisco M (1997) Osmolality and delta C-13 of leaf tissues of mangrove species from environments of contrasting rainfall and salinity. Estuar Coast Shelf Sci 45:337–344

    Article  CAS  Google Scholar 

  • Medina E, Cuevas E, Lugo AE (2010) Nutrient relations of dwarf Rhizophora mangle L.mangroves on peat in eastern Puerto Rico. Plant Ecol 207:13–24

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Biodiversity, Current status and trends: full report. Island Press, Washington

    Google Scholar 

  • Moberg F, Rönnbäck P (2003) Ecosystem services of the tropical seascape: interactions, substitutions and restoration. Ocean Coast Manag 46:27–46

    Article  Google Scholar 

  • Naidoo G (2006) Factors contributing to dwarfing in the mangrove Avicennia matina. Ann Bot 97:1095–1101

    Article  PubMed  CAS  Google Scholar 

  • New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Clim Res 21:1–25

    Article  Google Scholar 

  • Parry ML, Canziani OF, Palulikot JPet al (2007) Technical summary. Climate Change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Koppen–Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644

    Article  Google Scholar 

  • Polidoro BA, Carpenter KE, Collins L, Duke NC, Ellison AM, Ellison JC, Farnsworth EJ, Fernando ES, Kathiresan K, Koedam NE, Livingstone SR, Miyagi T, Moore GE, Vien NN, Ong JE, Primavera JH, Salmo SG, Sanciangco JC, Sukardjo S, Wang YM, Yong JWH (2010) The loss of species: mangrove extinction risk and geographic areas of global concern. PLoS ONE 5:e10095

    Article  PubMed  Google Scholar 

  • Quisthoudt K, Randin CF, Adams J, Rajkaran A, Dahdouh-Guebas F and Koedam N (2012) The effects of global warming on the future distribution of mangroves in South Africa. Biodiversity Conserv (in revision)

  • Reynolds RW, Zhang HM, Smith TM, Gentemann CL, Wentz F (2005) Impacts of in situ and additional satellite data on the accuracy of a sea-surface temperature analysis for climate. Int J Climatol 25:857–864

    Article  Google Scholar 

  • Robert EMR, Koedam N, Beeckman H, Schmitz N (2009) A safe hydraulic architecture as wood anatomical explanation for the difference in distribution of the mangroves Avicennia and Rhizophora. Funct Ecol 23:649–657

    Article  Google Scholar 

  • Robert EMR, Schmitz N, Boeren I, Driessens T, Herremans K, De Mey J, Van de Casteele E, Beeckman H, Koedam N (2011) Successive cambia: a developmental oddity or an adaptive structure? PLoS ONE 6:e16558

    Article  PubMed  CAS  Google Scholar 

  • Robertson AI, Alongi DM (1992) Tropical mangrove ecosystem. American geoscience union, Washington 330

    Book  Google Scholar 

  • Rohli RV, Vega AJ (2007) Climatology, vol 204. Jones and Bartlett

  • Sakai A (1970) Freezing resistance in willows for different climates. Ecology 51:485–491

    Article  Google Scholar 

  • Sakai A, Wardle P (1978) Freezing resistance of New Zealand trees and shrubs. N Z J Ecol 1:51–61

    Google Scholar 

  • Schmitz N, Robert EMR, Verheyden A, Kairo JG, Beeckman H, Koedam N (2008) A patchy growth via successive and simultaneous cambia: key to success of the most widespread mangrove species Avicennia marina? Ann Bot 101:49–58

    Article  PubMed  Google Scholar 

  • Schurr FM, Midgley GF, Rebelo AG, Reeves G, Poschlod P, Higgins SI (2007) Colonization and persistence ability explain the extent to which plant species fill their potential range. Glob Ecol Biogeogr 16:449–459

    Article  Google Scholar 

  • Soares MLG, Estrada GCD, Fernandez V, Tognella MMPT (2012) Southern limit of the Western South Atlantic mangroves: assessment of the potential effects of global warming from a biogeographical perspective. Estuar Coast Shelf Sci 101:44–53

    Article  Google Scholar 

  • Sobrado MA (1999) Drougth effect on photosynthesis of the mangrove, Avicennia germinans under contrasting salinities. Trees Struct Funct 13:125–130

    Google Scholar 

  • Sobrado MA, Ewe SML (2006) Ecophysiological characteristics of Avicennia germinans and Laguncularia racemosa coexisting in a scrub mangrove forest at the Indian River Lagoon, Florida. Trees Struct Funct 20:679–687

    Article  Google Scholar 

  • Spalding M, Blasco F, Field C (1997) World Mangrove Atlas. The international society for mangrove ecosystems, Okinawa, Japan 178

    Google Scholar 

  • Spalding M, Kainuma M, Collins L (2010) World atlas of mangroves. Earthscan, London 319

    Google Scholar 

  • Stevens PW, Fox SL, Montague CL (2006) The interplay between mangroves and saltmarshes at the transition between temperate and subtropical climate in Florida. Wetlands Ecol Manage 14:435–444

    Article  Google Scholar 

  • Stuart SA, Choat B, Martin KC, Holbrook NM, Ball MC (2007) The role of freezing in setting the latitudinal limits of mangrove forests. New Phytol 173:576–583

    Article  PubMed  CAS  Google Scholar 

  • Svenning JC, Skov F (2004) Limited filling of the potential range in European tree species. Ecol Lett 7:565–573

    Article  Google Scholar 

  • Svenning JC, Fitzpatrick MC, Normand S, Graham CH, Pearman PB, Iverson LR, Skov F (2010) Geography, topography, and history affect realized-to-potential tree species richness patterns in Europe. Ecography 33:1070–1080

    Article  Google Scholar 

  • Takyu M, Kubota Y, Aiba S, Seino T, Nishimura T (2005) Pattern of changes in species diversity, structure and dynamics of forest ecosystems along latitudinal gradients in East Asia. Ecol Res 20:287–296

    Article  Google Scholar 

  • Tomlinson PB (1986) The botany of mangroves. Cambridge University Press, Cambridge 413

    Google Scholar 

  • Valiela I, Bowen JL, York JK (2001) Mangrove forests: one of the world’s threatened major tropical environments. Bioscience 10:807–815

    Article  Google Scholar 

  • Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst 33:125–159

    Article  Google Scholar 

  • Willner W, Di Pietro R, Bergmeier E (2009) Phytogeographical evidence for post-glacial dispersal limitation of European beech forest species. Ecography 32:1011–1018

    Article  Google Scholar 

  • Wilson N, Saintilan N (2012) Growth of the mangrove species Rhizophora stylosa Griff. at its southern latitudinal limit in eastern Australia. Aquat Bot (in press)

  • Woodroffe CD, Grindrod J (1991) Mangrove biogeography—the role of quaternary environmental and sea-level change. J Biogeogr 18:479–492

    Article  Google Scholar 

  • Ye Y, Tam NFY, Lu CY, Wong YS (2005) Effects of salinity on germination, seedling growth and physiology of three salt-secreting mangrove species. Aquat Bot 83:193–205

    Article  CAS  Google Scholar 

  • Zhang YJ, Meinzer FC, Hao GY, Scholz FG, Bucci SJ, Takahashi FSC, Villalobos-Vega R, Giraldo JP, Cao KF, Hoffmann WA, Goldstein G (2009) Size-dependent mortality in a neotropical savanna tree: the role of height-related adjustments in hydraulic architecture and carbon allocation. Plant Cell Environ 32:1456–1466

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank all mangrove researchers who provided us the needed information about the latitudinal limits, especially Randy Altman (Florida Department of Environmental Protection), Marilyn Ball (The Australian National University), Catherine Beard (Waikato Regional Council, New Zealand), Matt Love (Guana Tolomato Matanzas National Estuarine Research Reserve), Arturo Ruiz Luna (CIAD-Mazatlan), Jose Luis Léon de la Luz (Centro de Investigaciones Biológicas del Noroeste), Eric Madrid (Texas A&M University), Mohammad Mokhtari (Khorramshar University of Marine Science and Technology), Matsui Naohiro (The General Environmental Technos Co., Osaka), Anusha Rajkaran (Nelson Mandela Metropolitan University), Luis Alfredo Santillan and Peter Symens (Natuurpunt), and the staff of Parc National du Banc d’Arguin and Parc National Diawling. We appreciated the insightful discussions about the topic with the research groups of Nicole Van Lipzig (Katholieke Universiteit Leuven), Christian Körner (Universität Basel) and with Ronny Merken (Vrije Universiteit Brussel). KQ and NS were supported by the Research Foundation—Flanders (FWO-Vlaanderen), EMR by the IWT-Vlaanderen and CFR has been funded by European Research Council (ERC) grant 233399 (project TREELIM). The field mission to Mauritania was funded by Vrije Universiteit Brussel, FWO-Vlaanderen and King Leopold III Fund for Nature Exploration and Conservation. We thank an anonymous reviewer for the constructive comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrien Quisthoudt.

Additional information

Communicated by C. Lovelock.

Electronic supplementary material

Below is the link to the electronic supplementary material.

468_2012_760_MOESM1_ESM.doc

Supplementary material Additional supporting information may be found in the online version of this article: Appendix S1: Table S1, Latitudinal limits of the genera Rhizophora and Avicennia; Appendix S2: Figure S2, Temperature at Avicennia limits grouped by availability of coast further poleward; Appendix S3: Exceptions and Appendix S4: Table S4, Literature review of mangrove temperature requirements. (DOC 303 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quisthoudt, K., Schmitz, N., Randin, C.F. et al. Temperature variation among mangrove latitudinal range limits worldwide. Trees 26, 1919–1931 (2012). https://doi.org/10.1007/s00468-012-0760-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-012-0760-1

Keywords

Navigation