Skip to main content
Log in

Aridity promotes differences in proline and phytohormone levels in Pinus pinaster populations from contrasting environments

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

We analysed proline, abscisic acid, (ABA), jasmonic acid (JA), indole acetic acid (IAA) and salicylic acid (SA) accumulation after summer drought at two Pinus pinaster provenance-progeny trial sites. The aim of the study was to evaluate P. pinaster phenotypic plasticity and intraspecific variation in the endogenous concentrations of these metabolites and to determine the best stress indicators for family and population discrimination. The environmental effect was remarkable, as striking differences between the sites were obtained for all indicators except for SA, which was unaffected by the environmental conditions. The levels of proline, ABA and IAA were higher in the xeric than in the mesic site. In contrast, JA was higher in the mesic site. The higher variation displayed at the family level led to family differences for all parameters and sites. Differences in proline and ABA between populations were exclusively found in the xeric site, where the population from the wet climate showed higher accumulation. This study provides evidence for differentiation among P. pinaster populations and families in their plastic responses to drought and highlights the importance of considering intraspecific variability when evaluating biochemical stress indicators in environmental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460–3479

    Article  PubMed  CAS  Google Scholar 

  • Ashraf MY, Azhar N, Hussain M (2006) Indole acetic (IAA) induced changes in growth relative water contents and gas exchange attributes of barley (Hordeum vulgare L.) grown under water stress conditions. Plant Growth Regul 50:85–90

    Article  CAS  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Bandurska H, Płachta M, Woszczyk M (2009) Seasonal patterns of free proline and carbohydrate levels in leaves of cherry laurel (Prunus laurocerasus) and ivy (Hederea helix) and leaf resistance to freezing and water deficit. Dendrobiology 62:3–9

    CAS  Google Scholar 

  • Bates L, Waldren RP, Teare ID (1973) Rapid determination of free proline for water‐stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bertrand A, Robitaille G, Nadeau P, Boutin R (1994) Effects of soil freezing and drought stress on abscisic acid content of sugar maple sap and leaves. Tree Physiol 14:413–425

    PubMed  CAS  Google Scholar 

  • Borsani O, Cuartero J, Valpuesta V, Botella MA (2002) Tomato tos1 mutation identifies a gene essential for osmotic tolerance and abscisic acid sensitivity. Plant J 32:905–914

    Article  PubMed  CAS  Google Scholar 

  • Chaves MM, Maroco JP, Pereira J (2003) Understanding plant responses to drought-from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  Google Scholar 

  • Corcuera L, Gil-Pelegrin E, Notivol E (2010) Phenotypic plasticity in Pinus pinaster δ13C: environment modulates genetic variation. Ann For Sci 67:812–823

    Article  Google Scholar 

  • Corcuera L, Cochard H, Gil-Pelegrin E, Notivol E (2011) Phenotypic plasticity in mesic populations of Pinus pinaster improves resistance to xylem embolism (P50) under severe drought. Trees (in press). doi:10.1007/s00468-011-0578-2

  • Cosgrove DJ, Gilroy S, Kao T, Ma H, Schultz JC (2000) Plant Signaling. Cross talk among geneticists, physiologists, and ecologists. Plant Physiol 124:499–506

    Article  PubMed  CAS  Google Scholar 

  • Creelman RA, Mullet JE (1995) Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc Natl Acad Sci USA 92:4114–4119

    Article  PubMed  CAS  Google Scholar 

  • Darbyshire B (1971) Changes in indoleacetic acid oxidase activity associated with plant water potential. Physiol Plan 25:80–84

    Article  CAS  Google Scholar 

  • Dat JF, Lopez-Delgado H, Foyer CH, Scott IM (1998) Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol 116:1351–1357

    Article  PubMed  CAS  Google Scholar 

  • Diamantoglou S, Rhizopoulou S (1992) Free proline accumulation in sapwood, bark and leaves of three evergreen sclerophylls and a comparison with an evergreen conifer. J Plant Physiol 140:361–365

    Article  CAS  Google Scholar 

  • Duan B, Yang Y, Lu Y, Korpelainen H, Berninger F, Li C (2007) Interactions between drought stress, ABA and genotypes in Picea asperata. J Exp Bot 58:3025–3036

    Article  PubMed  CAS  Google Scholar 

  • Duan B, Li Y, Zhang X, Korpelainen H, Li C (2009) Water deficit affects mesophyll limitation of leaves more strongly in sun than in shade in two contrasting Picea asperata populations. Tree Physiol 29:1551–1561

    Article  PubMed  CAS  Google Scholar 

  • Durgbanshi A, Arbona V, Pozo O, Miersch O, Sancho JV, Gómez-Cadenas A (2005) Simultaneous determination of multiple phytohormones in plant extracts by liquid chromatography-electrospray tandem mass spectrometry. J Agric Food Chem 53:8437–8442

    Article  PubMed  CAS  Google Scholar 

  • Filella I, Penuelas J, Llusia J (2006) Dynamics of the enhanced emissions of monoterpenes and methyl salicylate, and decreased uptake of formaldehyde, by Quercus ilex leaves after application of jasmonic acid. New Phytol 169:135–144

    Article  PubMed  CAS  Google Scholar 

  • Flexas J, Ribas-Carbó M, Diaz-Espejo A, Galmés J, Medrano H (2008) Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ 31:602–621

    Article  PubMed  CAS  Google Scholar 

  • Gadallah MAA (2000) Effects of indole-3-acetic acid and zinc on the growth, osmotic potential and soluble carbon and nitrogen components of soybean plants growing under water deficit. J Arid Environ 44:451–467

    Article  Google Scholar 

  • Gomez-Cadenas A, Pozo OJ, Garcia-Augustin P, Sancho JV (2002) Direct analysis of abscisic acid in crude plant extracts by liquid chromatography-electrospray/tandem mass spectrometry. Phytochem Anal 13:228–234

    Article  PubMed  CAS  Google Scholar 

  • Hare PD, Cress WA, Van Ataden L (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553

    Article  CAS  Google Scholar 

  • Hartung W, Schraut D, Jiang F (2005) Physiology of abscisic acid (ABA) in roots under stress: a review of the relationship between root ABA and radial water and ABA flows. Aust J Agric Res 56:1253–1259

    Article  CAS  Google Scholar 

  • Hassanein RA, Hassanein AA, El-din AB, Salama M, Hashem HA (2009) Role of jasmonic acid and abscisic acid treatments in alleviating the adverse effects of drought stress and regulating trypsin inhibitor production in soybean plant. Aust J Basic Appl Sci 3:904–919

    CAS  Google Scholar 

  • Howe G, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    Google Scholar 

  • Huang X, Xiao X, Zhang S, Korpelainen H, Li C (2009) Leaf morphological and physiological responses to drought and shade in two Populus cathayana populations. Biol Plant 53:588–592

    Article  Google Scholar 

  • Janda T, Szalai G, Tari I, Páldi E (1999) Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta 208:175–180

    Article  CAS  Google Scholar 

  • Kavi-Kishor PB, Sangam S, Amrutha RN, Sri-Laxmi P, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:3

    Google Scholar 

  • Koo AJK, Howe GA (2009) The wound hormone jasmonate. Phytochemistry 70:1571–1580

    Article  PubMed  CAS  Google Scholar 

  • Lansac AR, Zaballos JE, Martin A (1994) Seasonal water potential changes and proline accumulation in Mediterranean shrubland species. Vegetation 113:141–154

    Google Scholar 

  • Li C, Wang K (2003) Differences in drought responses of three contrasting Eucalyptus microtheca F. Muell. populations. For Ecol Manage 179:377–385

    Article  Google Scholar 

  • Maatallah S, Ghanem ME, Albouchi A, Bizid E, Lutts S (2010) A greenhouse investigation of responses to different water stress regimes of Laurus nobilis trees from two climatic regions. J Arid Environ 74:327–337

    Article  Google Scholar 

  • Mahouachi J, Arbona V, Gómez-Cadenas A (2007) Hormonal changes in papaya seedlings subjected to progressive water stress and re-watering. Plant Growth Regul 53:43–51

    Article  CAS  Google Scholar 

  • Meier CE, Newton RJ, Puryear JD, Sen S (1992) Physiological responses of loblolly pine (Pinus taeda) seedlings to drought stress: osmotic adjustment and tissue elasticity. J Plant Physiol 140:754–760

    CAS  Google Scholar 

  • Munné-Bosch S, Peñuelas J (2003) Photo- and antioxidative protection, and a role for salicylic acid during drought and recovery in Phillyrea angustifolia plants. Planta 217:758–766

    Article  PubMed  Google Scholar 

  • Munné-Bosch S, Falara V, Pateraki I, López-Carbonell M, Cela J, Kanellis AK (2008) Physiological and molecular responses of the isoprenoid biosynthetic pathway in a drought-resistant Mediterranean shrub, Cistus creticus exposed to water deficit. J Plant Physiol 166:136–145

    Article  PubMed  Google Scholar 

  • Nan R, Carman JG, Salisbury FB (2002) Water stress, CO2 and photoperiod influence hormone levels in wheat. J Plant Physiol 159:307–312

    Article  PubMed  CAS  Google Scholar 

  • Naser L, Kourosh V, Bahman K, Reza A (2010) Soluble sugars and proline accumulation play a role as effective indices for drought tolerance screening in Persian walnut (Juglans regia L.) during germination. Fruits 65:97–112

    Article  CAS  Google Scholar 

  • Pedranzani H, Sierra-de-Grado R, Vigliocco A, Miersch O, Abdala G (2007) Cold and water stresses produce changes in endogenous jasmonates in two populations of Pinus pinaster Ait. Plant Growth Regul 52:111–116

    Article  CAS  Google Scholar 

  • Perks MP, Irvine J, Grace J (2002) Canopy stomatal conductance and xylem sap abscisic acid (ABA) in mature Scots pine during a gradually imposed drought. Tree Physiol 22:877–883

    Article  PubMed  CAS  Google Scholar 

  • Qian YQ, Li DY, Han L, Sun ZY (2010) Inter-ramet photosynthate translocation in buffalograss under differential water deficit stress. J Am Soc Hortic Sci 135:310–316

    Google Scholar 

  • Raitio H, Sarjala T (2000) Effect of provenance on free amino acid and chemical composition of Scots pine needles. Plant Soil 221:231–238

    Article  CAS  Google Scholar 

  • Ren J, Dai W, Xuan Z, Yao Y, Korpelainen H, Li C (2007) The effect of drought and enhanced UV-B radiation on the growth and physiological traits of two contrasting poplar species. For Ecol Manag 239:112–119

    Article  Google Scholar 

  • Rojo E, Solano R, Sanchez-Serrano JJ (2003) Interactions between signaling compounds involved in plant defense. J Plant Growth Reg 22:82–98

    Article  CAS  Google Scholar 

  • Sanchez-Diaz M, Tapia C, Antolin MC (2008) Abscisic acid and drought response of Canarian laurel forest tree species growing under controlled conditions. Environ Exp Bot 64:155–161

    Article  CAS  Google Scholar 

  • Sakhabutdinova AR, Fatkhutdinova DR, Bezrukova MV, Shakirova FM (2003) Salicylic acid prevents the damaging action of stress factors on wheat plants. Bulg J Plant Physiol 97:314–319

    Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. Freeman ed, New York

  • Steinbauer MJ, Davies NW, Gaertner C, Derridj S (2009) Epicuticular waxes and plant primary metabolites on the surfaces of juvenile Eucalyptus globulus and E. nitens (Myrtaceae) leaves. Aust J Bot 57:474–485

    Article  CAS  Google Scholar 

  • Sturm N, Köstner B, Hartung W, Tenhunen J (1998) Environmental and endogenous controls on leaf- and stand-level water conductance in a Scots pine plantation. Ann For Sci 55:237–253

    Article  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  PubMed  CAS  Google Scholar 

  • Tardieu F, Zhang J, Katerji N, Bethenod O, Palmer S, Davies WJ (1992) Xylem ABA controls the stomatal conductance of field-grown maize subjected to soil compaction or soil drying. Plant Cell Environ 15:193–197

    Article  CAS  Google Scholar 

  • Tiryaki I, Tunaz H (2004) Systemic acquired resistance; characterization of genes associated with pant defense response. J Cell Mol Biol 3:9–14

    Google Scholar 

  • Umebese CE, Olatimilehin TO, Ogunsusi TA (2009) Salicylic acid protects nitrate reductase activity, growth and proline in amaranth and tomato plants during water deficit. Am J Agric Biol Sci 4:224–229

    Article  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation implants: a review. Amino Acids 35:753–759

    Article  PubMed  CAS  Google Scholar 

  • Xiao X, Xu X, Yang F (2008) Adaptive responses to progressive drought stress in two Populus cathayana populations. Silva Fenn 42:705–719

    Google Scholar 

  • Xiao X, Yang F, Zhang S, Korpelainen H, Li C (2009) Physiological and proteomic responses of two contrasting Populus cathayana populations to drought stress. Physiol Plant 136:150–168

    Article  PubMed  CAS  Google Scholar 

  • Xu G, Duan B, Li C (2008) Different adaptive responses of leaf physiological and biochemical aspects to drought in two contrasting populations of seabuckthorn. Can J For Res 38:584–591

    Article  CAS  Google Scholar 

  • Yang F, Miao LF (2010) Adaptive responses to progressive drought stress in two poplar species originating from different altitudes. Silva Fenn 44:23–37

    Google Scholar 

  • Yildiz-Aktas L, Akca H, Altun N, Battal P (2008) Phytohormone levels of drought-acclimated laurel seedlings in semiarid conditions. Gen Appl Plant Physiol 34:203–214

    Google Scholar 

  • Yoshiba Y, Kiyosue T, Katagiri T, Ueda H, Mizoguchi T, Yamaguchi-Shinozaki K, Wada K, Harada Y, Shinozaki K (1995) Correlation between the induction of a gene for delta1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J 7:751–760

    Article  PubMed  CAS  Google Scholar 

  • Zas R, Merlo E, Fernandez-Lopez J (2004) Juvenile—mature genetic correlations in Pinus pinaster ait. under different nutrient x water regimes. Silvae Genet 53:124–129

    Google Scholar 

  • Zhang X, Zhang R, Li C (2004) Population differences in physiological and morphological adaptations of Populus davidiana seedlings in response to progresive drought stress. Plant Sci 166:791–797

    Article  CAS  Google Scholar 

  • Zunzunegui M, Barradas MCD, Ain-Lhout F, Clavijo A, Novo FG (2005) To live or to survive in Doñana dunes: adaptive responses of woody species under a Mediterranean climate. Plant Soil 273:77–89

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the Spanish INIA project: RTA2005-00131-00-00 to Corcuera L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Corcuera.

Additional information

Communicated by M. Zwieniecki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corcuera, L., Gil-Pelegrin, E. & Notivol, E. Aridity promotes differences in proline and phytohormone levels in Pinus pinaster populations from contrasting environments. Trees 26, 799–808 (2012). https://doi.org/10.1007/s00468-011-0651-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-011-0651-x

Keywords

Navigation