Skip to main content
Log in

Influence of temperature on the in vitro pollen germination and pollen tube growth of various native Iranian almonds (Prunus L. spp.) species

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Pollen germination and pollen tube growth was quantified among various native Iranian wild almonds (P. dulcis (Mill.) D. A. Webb, P. eleaegnifolia Mill., P. orientalis Mill., P. lycioides Spach, P. reuteri Bioss. et Bushe, P. arabica Olivier, P. glauca Browick and P. scoparia Spach in order to identify differences in the tolerance of pollen to temperature variations. Pollen germination and pollen tube growth were observed after incubation in darkness in a germination medium for 24 h at 10–50°C at 5°C intervals. Maximum pollen germination of the wild almond species and specify that 60% was obtained for P. orientalis pollen and 98% for P. scoparia. Pollen tube length ranged from 860 μm was obtained in P. lycioides and 1490 μm in P. scoparia. A modified bilinear model best described the response to temperature of pollen germination and pollen tube length. Almond species variation was found for cardinal temperatures (T min, T opt and T max) of pollen germination percentage and pollen tube growth. Mean cardinal temperatures averaged over eight almond species were 14.7, 24.2, and 43.7°C for maximum percentage pollen germination and 14.48, 25.3, and 44.4 °C for maximum pollen tube length. The principal component analysis (PCA) identified maximum percentage pollen germination and pollen tube length of the species, and T max for the two processes as the most important pollen parameters in describing a species tolerance to high temperature. PCA also classified Prunus L. spp. into four groups according to the tolerance of pollen to temperature variations. The T min and T opt for pollen germination and tube growth, rate of pollen tube growth were less predictive in discriminating species for high temperature tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acar I (2004) Effects of pistachio (P. vera L.) pollinator types selected in Ceylanpinar on fruit set and fruit quality of some pistachio cultivars. PhD Thesis, University of Cukurova, Adana, Turkey

  • Acar I, Ak BE (1998) An investigation on pollen germination rates of some selected male trees at Ceylanpınar State Farm. Proceedings of the X. GREMPA Seminar. Cah Options Mediterr 33:63–66

  • Acar I, Kakani VG (2010) The effects of temperature on in vitro pollen germination and pollen tube growth of Pistacia spp. Sci Hort 125:569–572

    Article  Google Scholar 

  • Aloni B, Peet M, Pharr M, Karni L (2001) The effect of high temperature and high atmospheric CO2 on carbohydrate changes in bell pepper (Capsicum annuum) pollen in relation to its germination. Physi Plant 112:505–512

    Article  CAS  Google Scholar 

  • Atli HS, Kaska N, Eti S (1995) Selection of male Pistacia spp types growing in Gaziantep. Acta Hort 419:319–322

    Google Scholar 

  • Austin PT, Hewett EW, Noiton D, Plummer JA (1998) Self-incompatibility and temperature affect pollen tube growth in ‘Sundrop’ apricot (Prunus armerica L.). J Hort Sci Biot 73:375–386

    Google Scholar 

  • Barbosa W, Campo-Dall’orto FA, Ojima M (1989) Comportamento vegetativo e reprodutivo do pessegueiro IAC Tropical. IAC (Boletim cientı′fico), Campinas

  • Beyhan N, Odabaş F (1995) A research on the germination and the viability of pollen of some important hazelnut cultivars. II. National Horticultural Congress of Turkey, 3–6 October. Adana 1:484–488

    Google Scholar 

  • Beyhan N, Serdar S (2009) In vitro pollen germination and the tube growth of some European chestnut genotypes (Castanea sativa Mill.). Fruits 64:157–165

    Article  Google Scholar 

  • Boavida LC, McCormick S (2007) Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana. The Plant J 52:570–582

    Article  CAS  Google Scholar 

  • Bolat İ, Pırlak L (1999) An investigation on pollen viability, germination and tube growth in some stone fruits. Turk J Agr Forest 23:383–388

    Google Scholar 

  • Browicz K (1969) Amygdalus L. In: Rechinger KH (ed). Flora Iranica 66:166–168

  • Browicz K, Zohary D (1996) The genus Amygdalus L (Rosaceae): species relationships, distribution and evolution under domestication. Genet Resour Corp Evol 43:229–247

    Article  Google Scholar 

  • Caglar S, Kaska N (1995) A study on the supplemental pollination of pistachios in the Mediterranean region First International Symposium on Pistachio Nut. Acta Hort 419:55–60

    Google Scholar 

  • Calzoni GL, Speranza A, Gani N (1979) In vitro germination of apple pollen. Sci Hort 10:49–55

    Article  CAS  Google Scholar 

  • Cane JH (2009) Pollen viability and pollen tube attrition in Cranberry (Vacciniiim niacrocarpon Aiton). Acta Hort 810:563–566

    Google Scholar 

  • Cerovic R, Ruzic D (1992) Pollen tube growth in sour cherry (Prunus cerasus L.) at different temperatures. J Hort Sci 67:333–340

    Google Scholar 

  • Cohen E, Lavi U, Spiegel R (1989) Papaya pollen viability and storage. Sci Hort 40:317–324

    Article  Google Scholar 

  • Craufurd PQ, Prasad PVV, Kakani VG, Wheeler TR, Nigam SN (2003) Heat tolerance in groundnut. Field Crop Res 80:63–77

    Article  Google Scholar 

  • Dag A, Eisenstein D, Gazit S (2000) Effect of temperature regime on pollen and the effective pollination of ‘Kent’ mango in Israel. Sci Hort 86:1–11

    Article  Google Scholar 

  • Dai A, Wigley TML, Boville BA, Kiehl JT, Buja LE (2001) Climates of the 20th and 21st centuries simulated by the NCAR climate system model. J Clim 14:485–519

    Article  Google Scholar 

  • Denisov VP (1988) Almond Genetic Resources in the USSR and their use in production and breeding. Acta Hortic 224:299–306

    Google Scholar 

  • Ebadi A, May P, Sedgley M, Coombe BG (1995) Effects of low temperature near flowering time on ovule development and pollen tube growth in the grapevine (Vitis vinifera L.), cvs. Chardonnay and Shiraz. Aust J Grape Wine Res 1:11–18

    Article  Google Scholar 

  • Egea J, Burgos L (1995) Double kerneled fruit in almond (Prunus dulcis Mill.) as related to preblossom temperature. Ann Appl Biol 126:163–168

    Article  Google Scholar 

  • Egea J, Burgos L, Zoroa N, Egea L (1992) Influence of temperature on the in vitro germination of pollen of apricot (Prunus armeniaca L.). J Hort Sci 67:247–250

    Google Scholar 

  • Elgersma A, Stephenson AG, Nijs APM (1989) Effects of genotype and temperature on pollen tube growth in perennial ryegrass (Lolium perenne L.). Sex Plant Rep 2:225–230

    Google Scholar 

  • Fukui H, Wakayama Y, Nakamura M (1990) Effect of night temperature on the development of abnormal embryo sacs in Japanese persimmon ‘Nishimurawase’. J Jpn Soc Hort Sci 59:59–63

    Article  Google Scholar 

  • Garay BR, Barrow JR (1988) Pollen selection for heat tolerance in cotton. Crop Sci 28:857–859

    Article  Google Scholar 

  • Ghahreman A, Attar F (1999) Biodiversity of plant species in Iran, vol 1, Publication of Tehran University

  • Godini A, de Palma L, Petruzzella A (1987) Interrelationships of almond pollen germination at low temperatures, blooming time and biological behaviour of cultivars. Adv Hort Sci 1:73–76

    Google Scholar 

  • Grasselly C (1976) Les espe`ces sauvages d’amandier. Options Mediterr 32:28–44

    Google Scholar 

  • Hedhly A, Hormaza JI, Herrero M (2005) Influence of genotype-temperature interaction on pollen performance. J Evol Biol 18:1494–1502

    Article  PubMed  CAS  Google Scholar 

  • Hormaza JI, Herrero M (1999) Pollen performance as affected by the pistilar genotype in sweet cherry (Prunus avium L.). Protoplasma 208:129–135

    Article  Google Scholar 

  • Institute SAS (1979) SAS/STAT User’s Guide, Version 8.2. SAS Institute Inc., Cary, NC. SAS/STAT User’s Guide, Version 9.1.3. SAS Institute Inc., Cary

    Google Scholar 

  • Jefferies CJ, Brain P, Stott KG, Belcher AR (1982) Experimental systems and mathematical model for studying temperature effects on pollen-tube growth and fertilization in plum. Plant Cell Env 5:231–236

    Google Scholar 

  • Johnson DE (1998) Applied multivariate methods for data analysis. Duxbury Press, New York

    Google Scholar 

  • Kakani VG, Prasad PVV, Craufurd PQ, Wheeler TR (2002) Response of in vitro pollen germination and pollen tube growth of groundnut (Arachis hypogaea L.) genotypes to temperature. Plant Cell Env 25:1651–1661

    Article  Google Scholar 

  • Kakani VG, Reddy KR, Koki S, Wallace TP, Prasad PVV, Reddy VR, Zhao D (2005) Differences in vitro pollen germination and pollen tube growth of cotton cultivars in response to high temperature. Ann Bot 96:59–67

    Article  PubMed  CAS  Google Scholar 

  • Kamiab F, Vesvaei A, Panahi B (2006) Male performance in pistachio (Pistacia vera L.). IV. International symposium on pistachios and almonds. Acta Hort 726:133–138

    Google Scholar 

  • Kaufmane E, Rumpunen K (2002) Pollination, pollen tube growth and fertilization in Chaenomeles japonica (Japanese quince). Sci Horti 94:257–271

    Article  Google Scholar 

  • Kester DE, Gradziel TM, Ch Grasselly (1991) Almonds (Prunus). In: Moore JM, Ballington JR (eds) Genetic resources of temperate fruit and nut crops, published by the internat. Society for Horticultural Science, Wageningen, pp 701–758

    Google Scholar 

  • Komarov VL, Shiskin BK, Yuzepchuk SV (eds) (1941) Flora of the USSR, vol 10: Rosaceae–Rosoideae, Prunoideae (translated from the Russian, 1971). Israel Program for Scientific Translation, Jerusalem

    Google Scholar 

  • Kozai N, Beppu K, Mochioka R, Boonprakob U, Subhadrabandhu S, Lillecrapp AM, Wallwork MA, Sedgley M (1999) Female and male sterility cause low fruit set in a clone of the ‘Trevatt’ variety of apricot (Prunus armeniaca). Sci Horti 82:255–263

    Article  Google Scholar 

  • Kremer D, Jemrić T (2006) Pollen germination and pollen tube growth in Fraxinus pennsylvanica. Biologia Bratislava 61:79–83

    Article  Google Scholar 

  • Kuru C (1995) Artificial pollination of pistachio trees under unsufficient pollination conditions First International Symposium on Pistachio Nut. Acta Hort 419:121–123

    Google Scholar 

  • Larcher W, Bauer H (1980) Ecological significance of resistance to low temperature. Encycl Plant Physiol 12:403–438

    Google Scholar 

  • Lee CW, Thomas JC, Buchmann SL (1985) Factors affecting germination of jojoba pollen. J Am Soc Hort Sci 110:671–676

    CAS  Google Scholar 

  • Luza JG, Polito VS, Weinbaum SA (1987) Staminate bloom date and temperature responses of pollen germination and tube growth in two walnut (Juglans) species. Ame J Bot 74:1898–1903

    Article  Google Scholar 

  • Malik MN, Chaudhry FI, Makhdum MI (1999) Cell membrane thermostability as a measure of heat-tolerance in cotton. Pak J Sci Ind Res 42:44–46

    Google Scholar 

  • Martineau JR, Specht JE, Williams JH, Sullivan CY (1979) Temperature tolerance in soybeans I. Evaluation of a technique for assessing cellular membrane thermostability. Crop Sci 19:75–78

    Article  Google Scholar 

  • Matsui T, Omasa K, Horie T (1977) High temperature-induced spikelet sterility of japonica rice at flowering in relation to air temperature, humidity and wind velocity conditions. Jap J Crop Sci 66:449–455

    Google Scholar 

  • Mellenthin WM, Wang CY, Wang SY (1972) Influence of temperature on pollen tube growth and initial fruit development in ‘D’Anjou’ pear. Hort Sci 7:557–559

    Google Scholar 

  • Mercado JA, Martrigo M, Reid MS, Valpuesta V, Quesada MA (1997) Effect of low temperature on pepper pollen morphology and fertility: evidence of cold-induced exine alteration. J Hort Sci 72:317–326

    Google Scholar 

  • Mert C (2009) Temperature responses of pollen germination in walnut (Juglans regia L.). J Biol Environ Sci 3:37–43

    Google Scholar 

  • Mitchell JC, Petolino JF (1988) Heat stress effects on isolated reproductive organs of maize. J Plant Physi 133:625–628

    Google Scholar 

  • Nava GA, Dalmago GA, Bergamaschi H, Paniz R, dos Saantos RP, Marodin GAB (2009) Effect of high temperatures in the pre-blooming and blooming periods on ovule formation, pollen grains and yield of ‘Granada’ peach. Sci Hort 122:37–44

    Article  Google Scholar 

  • Niles WL, Quesenberry KH (1992) Pollen germination of rhizoma peanut cv Florigraze. Peanut Sci 19:105–107

    Article  Google Scholar 

  • Omanga PA, Summerfield RJ, Qi A (1995) Flowering of pigeonpea (Cajanus cajan L.) in Kenya: responses of early maturing genotypes to location and date of sowing. Field Crop Res 41:25–34

    Article  Google Scholar 

  • Pacini E (1996) Types and meaning of pollen carbohydrate reserves. Sex Plant Repr 22:362–366

    Article  Google Scholar 

  • Pasumarty SV, Higuchi S, Murata T (1995) Environmental influences on seed yield components of white clover. J Appl Seed Prod 13:25–31

    Google Scholar 

  • Peet MM, Willits DH, Gardner R (1997) Response of ovule development and post-pollen production processes in male sterile tomatoes in chronic, sub-acute high temperature stress. J Exp Bot 48:101–111

    Article  CAS  Google Scholar 

  • Peet MM, Sato S, Gardner R (1998) Comparing heat stress effects on male-fertile and male-sterile tomatoes. Plant Cell and Env 21:225–231

    Article  Google Scholar 

  • Pirlak L (2002) The effects of temperature on pollen germination and pollen tube growth of apricot and sweet cherry. Gartenbauwissenschaft 67:61–64

    Google Scholar 

  • Polowick PL, Sawhney VK (1985) Temperature effects on male fertility and flower and fruit development in Capsicum annuum L. Sci Horti 25:117–127

    Article  Google Scholar 

  • Prasad PVV, Craufurd PQ, Summerfield RJ (1999a) Sensitivity of peanut to timing of heat stress during reproductive development. Crop Sci 39:1352–1357

    Article  Google Scholar 

  • Prasad PVV, Craufurd PQ, Summerfield RJ (1999b) Fruit number in relation to pollen production and viability in groundnut exposed to short episodes of heat stress. Ann Bot 84:381–386

    Article  Google Scholar 

  • Prasad PVV, Craufurd PQ, Kakani VG, Wheeler TR, Boote KJ (2001) Influence of high temperature during pre- and post-anthesis stages of floral development on fruit-set and pollen germination in peanut. Aus J Plant Physi 28:233–240

    Google Scholar 

  • Prasad PVV, Boote KJ, Allen LH, Thomas JMG (2002) Effects of elevated temperature and carbon dioxide on seed-set and yield of kidney bean (Phaseolus vulgaris L.). Global Change Biol 8:710–721

    Article  Google Scholar 

  • Prasad PVV, Boote KJ, Allen LH, Thomas JMG (2003) Super-optimal temperatures are detrimental to peanut (Arachis hypogaea L.) reproductive processes and yield at both ambient and elevated carbon dioxide. Global Change Biol 9:1775–1787

    Article  Google Scholar 

  • Pressman E, Peet MM, Pharr DM (2002) The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in the developing anthers. Ann Bot 90:631–636

    Article  PubMed  CAS  Google Scholar 

  • Reddy KR, Hodges HF, Reddy VR (1992) Temperature effects on cotton fruit retention. Agr J 84:26–30

    Article  Google Scholar 

  • Rickter AA (1972) L’amandier. Academie Sciences Agricoles, Jardin Botanique de Nikits, Yalta

    Google Scholar 

  • Rikin A, Dillworth JW, Bergman DK (1993) Correlation between circadian rhythm of resistance to extreme temperature and changes in fatty acid composition in cotton seedlings. Plant Physi 101:31–36

    CAS  Google Scholar 

  • Rodriguez-Riano T, Dafni A (2000) A new procedure to assess pollen viability. Sex Plant Reprod 12:241–244

    Article  Google Scholar 

  • Rosell P, Herrero M, Sauco VG (1999) Pollen germination of cherimoya (Annona cherimmola Mill.). In vivo characterization and optimization of in vitro germination. Sci Hort 81:251–265

    Article  CAS  Google Scholar 

  • Saini HS, Aspinall D (1982) Sterility in wheat (Triticum aestivum L.) induced by water deficit or high temperature, possible mediation by abscisic acid. Aust J Plant Physi 9:529–537

    Article  CAS  Google Scholar 

  • Sato S, Peet MM, Thomas JF (2002) Determining critical pre- and post-anthesis periods and physiological processes in Lycopersicon esculentum Mill exposed to moderately elevated temperatures. J Exp Bot 53:1187–1195

    Article  PubMed  CAS  Google Scholar 

  • Sharafi Y, Karimi M, Ghorbanifar M (2010) Study of pollen tube growth, cross-compatibility and fruit set in some almond genotypes. Afr J Plant Sci 4:135–137

    Google Scholar 

  • Shivanna KR, Linskens HF, Cresti M (1991) Response of tobacco pollen to high humidity and heat stress: viability and germinability in vitro and in vivo. Sex Plant Reprod 4:104–109

    Article  Google Scholar 

  • Snow AA, Spira T (1991) Pollen vigor and the potential for sexual selection in plants. Nature 352:796–797

    Article  Google Scholar 

  • Sorkheh K, Amini F (2010) Principale and procedures of multivariate statical analysis. Daneshparvar Press, Tehran

    Google Scholar 

  • Sorkheh K, Shiran B, Rouhi V, Asadi E, Jahanbazi H, Moradi H, Gradziel TM, Martínez-Gómez P (2009) Phenotypic diversity within native Iranian almond (Prunus spp.) species and their breeding potential. Genet Resour Crop Evol 56:947–961

    Article  Google Scholar 

  • Stanley RG (1971) Pollen chemistry and tube growth. In: Heslop-Harrison J (ed) Pollen: development and physiology. Butterworths, London, pp 131–155

    Google Scholar 

  • Stott KG (1972) Pollen germination and pollen-tube characteristics in a range of apple cultivars. J Hort Sci 47:191–198

    Google Scholar 

  • Sukhvibul N, Whiley AW, Vithanage V, Smith MK, Doogan VJ, Hetherington SE (2000) Effect of temperature on pollen germination and pollen tube growth of four cultivars of mango (Mangifera indica L.). J Horti Sci Biotech 75:64–68

    Google Scholar 

  • Sütyemez M (2007) Determination of pollen production and quality of some local and foreign walnut genotypes in Turkey. Turk J Agric For 3:109–114

    Google Scholar 

  • Therios IN, Tsirakoglou VM, Dimossi-Theriou KN (1985) Physiological aspects of pistachio (Pistacia vera L.) pollen germination. Riv. Ortoflorofrutt Ital 69:161–170

    Google Scholar 

  • Tollenaar M, Daynard TB, Hunter RB (1979) Effect of temperature on rate of leaf appearance and flowering date in maize. Crop Sci 19:363–366

    Article  Google Scholar 

  • ur Rahman H, Malik SA, Saleem M (2004) Heat tolerance of upland cotton during the fruiting stage evaluated using cellular membrane thermostability. Field Crops Res 85:149–158

    Article  Google Scholar 

  • Vachun Z (1981) Etude de quelques properties morphologiques et physiologiques du pollen d’abricotier Germination et croissance des tubes polliniques a basses temperatures. Acta Hort 85:387–417

    Google Scholar 

  • Vasilakakis M, Porlingis IC (1985) Effect of temperature on pollen germination, pollen tube growth, effective pollination period, and fruit set of pear. Hort Sci 20:733–735

    Google Scholar 

  • Visser T (1955) Germination and storage of pollen. Med. Landbouwhogeschool Wageningen 55:1–68

    Google Scholar 

  • Voyiatzi CI (1995) An assessment of the in vitro germination capacity of pollen grains of five tea hybrid rose cultivars. Euphytica 83:199–204

    Article  Google Scholar 

  • Weinbaum SA, Parfitt DE, Polito VS (1984) Differential cold sensitivity of pollen grain germination in two Prunus species. Euphytica 33:419–426

    Article  Google Scholar 

  • Willians RR (1970) Factors affecting pollination in fruit trees. In: Luckwill LC, Cutting CV (eds) Physiology of Tree Crops. Academic Press, London, pp 193–207

    Google Scholar 

  • Wolukau JN, Zhang SL, Xu GH, Chen D (2004) The effect of temperature, polyamines and polyamine synthesis inhibitor on in vitro pollen germination and pollen tube growth of Prunus mume. Sci Hort 99:289–299

    Article  CAS  Google Scholar 

  • Yan WK, Wallace DH (1998) Simulation and prediction of plant phenology for five crops based on photoperiod by temperature interaction. Ann Bot 81:705–716

    Article  Google Scholar 

  • Young LW, Wilen RW, Bonham-Smith PC (2004) High temperature stress of Brassica napus during flowering reduces micro- and megagametophyte fertility, induces fruit abortion, and disrupts seed production. J Exp Bot 55:485–495

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors offer grateful thanks to Shahrekord University for financial assistance, as well as to the Agriculture and Natural Resources Research Center of Shahrekord for access of various wild species of almond trees. We are grateful to Ms. Kh. chenaneh-Hanoni for her kind help in undertaking this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Sorkheh.

Additional information

Communicated by J. Carlson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorkheh, K., Shiran, B., Rouhi, V. et al. Influence of temperature on the in vitro pollen germination and pollen tube growth of various native Iranian almonds (Prunus L. spp.) species. Trees 25, 809–822 (2011). https://doi.org/10.1007/s00468-011-0557-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-011-0557-7

Keywords

Navigation