Skip to main content
Log in

Climate controls act at different scales on the seasonal pattern of Quercus ilex L. stem radial increments in NE Spain

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Long-term data on radial increment dynamics in Mediterranean species may identify which climatic variables are the main constraints for radial growth and at which temporal scales they act. To this end, we examined stem radial fluctuations in Quercus ilex L., the dominant evergreen oak species in the Western Mediterranean Basin, over a period of 11 years (1994–2004) at a coastal site in north-eastern Spain. We used manual band dendrometers to record girth changes in trees on north- and south-facing slopes. Annual increments measured by dendrometers showed good agreement with annual tree-ring width. North-facing trees showed a lower long-term cumulative radial increment than south-facing trees. The seasonal radial increment pattern of Q. ilex was bimodal, being characterized by a greater increase in May and a lesser, more variable increase peak in September. Both phases corresponded to warm and moist climatic conditions, whereas radial increase of stems stopped in winter and occasionally in summer. Considering the whole year, mean maximum air temperature was the main factor positively affecting radial increment of Q. ilex from short- (5 days) to- long (30 days) time scales, whereas the accumulated precipitation exerted a similar effect at longer (30 days) scales, but only on south-facing trees. In summer, all trees were positively correlated with precipitation at long-time scales (30 days); however, only stem increment of south-facing trees showed a significant relation to the temperature at short-time scales (10 days). We confirmed the dominant role of temperature as the major constraint on radial increment at short time scales, despite most previous studies were mostly biased towards precipitation effects at monthly scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barbero M, Loisel R, Quézel P (1992) Biogeography, ecology and history of Mediterranean Quercus ilex ecosystems. Vegetatio 99–100:19–34

    Article  Google Scholar 

  • Bouriaud O, Leban JM, Bert D, Deleuze C (2005) Intra-annual variations in climate influence growth and wood density of Norway spruce. Tree Physiol 25:651–660

    PubMed  CAS  Google Scholar 

  • Camarero JJ, Guerrero-Campo J, Gutiérrez E (1998) Tree-ring growth and structure of Pinus uncinata and Pinus sylvestris in the Central Spanish Pyrenees. Arctic Alpine Res 30:1–10

    Article  Google Scholar 

  • Campelo F, Gutiérrez E, Ribas M, Nabais C, Freitas H (2007) Relationships between climate and double rings in Quercus ilex from northeast Spain. Can J For Res 37:1915–1923

    Article  Google Scholar 

  • Campelo F, Nabais C, García-González I, Cherubini P, Gutiérrez E, Freitas H (2009) Dendrochronology of Quercus ilex L. and its potential use for climate reconstruction in the Mediterranean region. Can J For Res 39:2486–2493. doi:10.1139/X09-163

    Article  Google Scholar 

  • Cartan-Son M, Floret C, Galan MJ, Grandjanny M, Le Floc’h E, Maistre M, Perret P, Romane F (1992) Factors affecting radial growth of Quercus ilex L. in a coppice stand in southern France. Vegetatio 99–100:61–68

    Article  Google Scholar 

  • Castro-Díez P, Montserrat-Martí G (1998) Phenological pattern of fifteen Mediterranean phanaerophytes from Quercus ilex communities of NE Spain. Plant Ecol 139:103–112

    Article  Google Scholar 

  • Cherubini P, Gartner BL, Tognetti R, Bräker OU, Schoch W, Innes JL (2003) Identification, measurement and interpretation of tree rings in woody species from mediterranean climates. Biol Rev 78:119–148

    Article  PubMed  Google Scholar 

  • Corcuera L, Camarero JJ, Gil-Pelegrin E (2004) Effects of a severe drought on Quercus ilex radial growth and xylem anatomy. Trees 18:83–92

    Google Scholar 

  • Corcuera L, Morales F, Abadia A, Gil-Pelegrin E (2005) Seasonal changes in photosynthesis and photoprotection in a Quercus ilex subsp. ballota woodland located in its upper altitudinal extreme in the Iberian Peninsula. Tree Physiol 25:599–608

    PubMed  CAS  Google Scholar 

  • Cotillas M, Sabaté S, Gracia C, Espelta JM (2009) Growth response of mixed mediterranean oak coppices to rainfall reduction. Could selective thinning have any influence on it? For Ecol Manag 258:1677–1683

    Article  Google Scholar 

  • Daudet FA, Ameglio T, Cochard H, Archilla O, Lacointe A (2005) Experimental analysis of the role of water and carbon in tree stem diameter variations. J Exp Bot 56:135–144

    PubMed  CAS  Google Scholar 

  • Deslauriers A, Morin H, Urbinati C, Carrer M (2003) Daily weather response of balsam fir (Abies balsamea (L.) Mill.) stem radius increment from dendrometer analysis in the boreal forests of Quebec (Canada). Trees 17:477–484

    Google Scholar 

  • Deslauriers A, Rossi S, Anfodillo T (2007) Dendrometer and intra-annual tree growth: what kind of information can be inferred? Dendrochronologia 25:113–124

    Article  Google Scholar 

  • Drew DM, Downes GM (2009) The use of precision dendrometers in research on daily stem size and wood property variation: a review. Dendrochronologia 27:159–172

    Article  Google Scholar 

  • Dünisch O, Bauch J, Gasparotto L (2002) Formation of increment zones and intraannual growth dynamics in the xylem of Swietenia macrophylla, Carapa guianensis, and Cedrela odorata (Meliaceae). IAWA Bull 23:101–119

    Google Scholar 

  • Filella I, Llusìa J, Piñol J, Peñuelas J (1998) Leaf gas exchange and fluorescence of Phillyrea latifolia and Quercus ilex samplings in severe drought and high temperature conditions. Environ Exp Bot 39:213–220

    Article  Google Scholar 

  • Folch R (1986) La vegetació dels Països Catalans. Ed. Ketres, Barcelona

    Google Scholar 

  • Fraser DA (1962) Tree growth in relation to soil moisture. In: Kozlowski TT (ed) Tree growth. The Ronald Press, New York, pp 183–204

    Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic Press, New York

    Google Scholar 

  • Gea-Izquierdo G, Martín-Benito D, Cherubini P, Cañellas I (2009) Climate-growth variability in Quercus ilex L. west Iberian open woodlands of different stand density. Ann For Sci 66:802. doi:10.1051/forest/2009080

    Article  Google Scholar 

  • Gratani L (1996) Leaf and shoot growth dynamics of Quercus ilex L. Acta Oecol 17:17–27

    Google Scholar 

  • Gratani L (2000) Leaf temperature effects on gas exchange in Quercus ilex L. growing under field conditions. Plant Biosyst 134:19–24

    Article  Google Scholar 

  • Gratani L, Pesoli P, Crescente MF, Aichner K, Larcher W (2000) Photosynthesis as a temperature indicator in Quercus ilex L. Glob Planet Change 24:153–163

    Article  Google Scholar 

  • Gratani L, Varone L, Catoni R (2008) Relationship between net photosynthesis and leaf respiration in Mediterranean evergreen species. Photosynthetica 46:567–573

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: impacts, adaptation and vulnerability. Cambridge University Press, Cambridge

    Google Scholar 

  • Keeland BD, Sharitz RR (1993) Accuracy of tree growth measurements using dendrometer bands. Can J For Res 23:2454–2457

    Article  Google Scholar 

  • Larcher W (2000) Temperature stress and survival ability of Mediterranean sclerophyllous plants. Plant Biosyst 134:279–295

    Article  Google Scholar 

  • Liphschitz N, Lev-Yadun S (1986) Cambial activity of evergreen and seasonal dimorphics around the Mediterranean. IAWA Bull 7:145–153

    Google Scholar 

  • Littell RC, Milliken GA, Stroup WW, Wolfinger RD, Schabenberger O (2006) SAS system for mixed models. SAS Institute, Cary

    Google Scholar 

  • Llorens L, Peñuelas J, Filella I (2003) Diurnal and seasonal variations in the photosynthetic performance and water relations of two co-occurring Mediterranean shrubs, Erica multiflora and Globularia alypum. Physiol Plant 8:84–95

    Article  Google Scholar 

  • Mäkinen H, Seo J-W, Nöjd P, Schmitt U, Jalkanen R (2008) Seasonal dynamics of wood formation: a comparison between pinning, microcoring and dendrometer measurements. Eur J For Res 127:235–245

    Google Scholar 

  • Mitrakos K (1980) A theory for Mediterranean plant life. Acta Oecol 1:245–252

    Google Scholar 

  • Montserrat-Martí G, Camarero JJ, Palacio S, Pérez-Rontomé C, Milla R, Albuixech J, Maestro M (2009) Summer-drought constraints the phenology and growth of two coexisting Mediterranean oaks with contrasting leaf habit: implications for their persistence and reproduction. Trees 23:787–799

    Article  Google Scholar 

  • Mudelsee M (2003) Estimating Pearson’s correlation coefficient with bootstrap confidence interval from serial dependent time series. Math Geol 35:651–665

    Article  Google Scholar 

  • Nabais C, Freitas H, Hagemeyer J (1998–1999) Tree-rings to climate relationships of Quercus ilex L. in the NE-Portugal. Dendrochronologia 16–17: 37–44

  • Ogaya R, Peñuelas J (2007) Tree growth, mortality, and above-ground biomass accumulation in a holm oak forest under a five-year experimental field drought. Plant Ecol 189:291–299

    Article  Google Scholar 

  • Ogaya R, Peñuelas J, Martinez-Vilalta J, Mangiron M (2003) Effect of drought on diameter increment of Quercus ilex, Phillyrea latifolia, and Arbutus unedo in a holm oak forest of NE Spain. For Ecol Manag 180:175–184

    Article  Google Scholar 

  • Palamarev E (1989) Paleobotanical evidences of the Tertiary history and origin of the Mediterranean sclerophyll dendroflora. Plant Syst Evol 162:93–107

    Article  Google Scholar 

  • Terradas J, Savé R (1992) The influence of summer and winter stress and water relationships on the distribution of Quercus ilex L. Vegetatio 99–100:137–145

    Article  Google Scholar 

  • Venugopal N, Krishnamurthy KV (1987) Seasonal production of secondary xylem in the twigs of certain tropical trees. IAWA Bull 8:31–40

    Google Scholar 

  • Willmott CJ, Rowe CM, Mintz Y (1985) Climatology of the terrestrial seasonal water cycle. J Climatol 5:589–606

    Article  Google Scholar 

  • Zhang SH, Romane F (1991) Diameter growth of Quercus ilex L. and the interannual variability of climatic characteristics. Ann Sci For 48:225–234

    Article  Google Scholar 

  • Zweifel R, Item H, Hasler R (2001) Link between diurnal stem radius changes and tree water relations. Tree Physiol 21:869–877

    PubMed  CAS  Google Scholar 

  • Zweifel R, Zeugin F, Zimmermann L, Newbery DM (2006) Intra-annual radial growth and water relations of trees -implications towards a growth mechanism. J Exp Bot 57:1445–1459

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was initiated thanks to the Spanish project (Ref. FOR91-0689) directed by Dr. Gabriel Montserrat. It was also partially funded by the EU project FORMAT (Ref. ENV4-CT97-0641). We thank the Unidad de Sanidad Forestal (Gob. Aragón) and the Parc Nat. Garraf (Dip. Barcelona) for their support. We are very grateful to A. Bernat and M. Abril (Dept. d’Ecologia, Univ. Barcelona) who helped during fieldwork. We thank Robin Rycroft for revising English, and two anonymous referees whose criticisms and comments helped us to improve the manuscript. FC was funded by FCT (Portuguese Ministry for Science and Technology) through a PhD fellowship (SFRH/BD/10677/2002). JJC acknowledges the financial and collaborative support of project CGL2008-04847-C02-01/BOS (CICyT, FEDER,) ARAID and Globimed.

Conflict of interest

The authors declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilia Gutiérrez.

Additional information

Communicated by A. Braeuning.

Appendix

Appendix

See Fig. 6.

Fig. 6
figure 6

Climate diagram of the closest meteorological station (Begues) to the study site. Precipitation and temperature are represented by full and empty circles, respectively. The grey area denotes the assumed dry period (mean Temperature > 2 times total Precipitation)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutiérrez, E., Campelo, F., Camarero, J.J. et al. Climate controls act at different scales on the seasonal pattern of Quercus ilex L. stem radial increments in NE Spain. Trees 25, 637–646 (2011). https://doi.org/10.1007/s00468-011-0540-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-011-0540-3

Keywords

Navigation