Skip to main content

Advertisement

Log in

Climate signal in tree-ring chronologies of Pinus peuce and Pinus heldreichii from the Pirin Mountains in Bulgaria

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Numerous proxy climate reconstructions have been developed for Europe, but there are still regions with limited data of this kind. One region is the Balkan Peninsula, which is characterized by complex interactions between mountains and climate. We present and discuss two tree-ring chronologies—a 758-year-long one of Pinus heldreichii Christ and 340-year-long one of Pinus peuce Griseb. from treeline locations in the Pirin Mountains in Bulgaria. Climate–growth relationships were computed with bootstrap correlation functions and their consistency over time assessed by calculating the correlations over shortened periods. In addition, we reviewed and analyzed climate situations in years with unusually narrow or wide tree rings. Both species were negatively influenced by previous summer drought conditions and cold winters. Early summer temperatures were positively correlated with P. peuce radial growth, whereas P. heldreichii displayed dependence on summer precipitation. In the second half of the twentieth century, the P. heldreichii trees displayed higher sensitivity to summer drought, which was probably a result of increased summer temperatures and decreased winter precipitation. Our findings contribute to more reliable proxy climate records for the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barbero M, Loisel R, Quézel P, Richardson DM, Romane F (1998) Pines of the Mediterranean Basin. In: Richardson DM (ed) Ecology and biogeography of Pinus. Cambridge University Press, Cambridge, pp 153–170

    Google Scholar 

  • Biondi F, Waikul K (2004) DENDROCLIM2002: a C++ program for statistical calibration of climate signals in tree-ring chronologies. Comp Geosci 30:303–311

    Article  Google Scholar 

  • Briffa K, Schweingruber F, Jones P, Osborn T (1998) Reduced sensitivity of recent tree growth to temperature at high northern latitudes. Nature 391:678–682

    Article  CAS  Google Scholar 

  • Briffa KR, Osborn TJ, Schweingruber FH, Harris IC, Jones PD, Shiyatov SG, Vaganov EA (2001) Low-frequency temperature variations from a northern tree-ring-density network. J Geophys Res 106:2929–2941

    Article  Google Scholar 

  • Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys Res 111, D12106. doi:10.1029/2005JD006548

  • Brown DR, Petkova N (2007) Snow cover variability in Bulgarian mountainous regions, 1931–2000. Int J Climatol 27(9):1215–1229

    Article  Google Scholar 

  • Büntgen U, Frank DC, Nievergelt D, Esper J (2006) Summer temperature variations in the European Alps, a.d. 755–2004. J Clim 19:5606–5623

    Article  Google Scholar 

  • Büntgen U, Frank DC, Kaczka RJ, Verstege A, Zwijacz-Kozica T, Esper J (2007) Growth/climate response of a multi-species tree-ring network in the Western Carpathian Tatra Mountains, Poland and Slovakia. Tree Phyiol 27:689–702

    Google Scholar 

  • Carrer M, Urbinati C (2004) Age-dependent tree-ring growth responses to climate in Larix decidua and Pinus cembra. Ecology 85:730–740

    Article  Google Scholar 

  • Carrer M, Nola P, Eduard JL, Motta R, Urbinati C (2007) Regional variability of climate–growth relationships in Pinus cembra high elevation forests in the Alps. J Ecol 95:1072–1083

    Article  Google Scholar 

  • Cook ER (1985) A time series analysis approach to the tree-ring standardization. Ph.D. Thesis, University of Arizona, USA

  • Cook E, Kairiukstis A (eds) (1990) Methods of dendrochronology. Kluwer, Dordrecht, p 391

    Google Scholar 

  • D’Arrigo R, Wilson R, Liepert B, Cherubini P (2008) On the ‘Divergence Problem’ in Northern Forests: a review of the tree-ring evidence and possible causes. Glob Planet Change 60:289–305

    Article  Google Scholar 

  • Esper J, Cook ER, Schweingruber FH (2002) Low-frequency signals in long tree-ring chronologies and the reconstruction of past temperature variability. Science 295:2250–2253

    Article  CAS  PubMed  Google Scholar 

  • Esper J, Niederer R, Bebi P, Frank D (2008) Climate signal age effects—evidence from young and old trees in the Swiss Engadin. For Ecol Manage 255:3783–3789

    Article  Google Scholar 

  • Frank D, Büntgen U, Böhm R, Maugeri M, Esper J (2007) Warmer early instrumental measurements versus colder reconstructed temperatures: shooting at a moving target. Q Sci Rev 26:3298–3310

    Article  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic Press, London, p 567

    Google Scholar 

  • Gindl W (1999) Climate significance of light rings in timberline spruce (Picea abies). Aust Alps Arctic Antarc Alpine Res 31(3):242–246

    Article  Google Scholar 

  • Griffiths HI, Krystufek B, Reed JM (eds) (2004) Balkan biodiversity: pattern and process in the European hotspot. Kluwer, Dordrecht, p 357

    Google Scholar 

  • Guerrieri MR, Todaro L, Carraro V, De Stefano S, Lapolla A, Saracino A (2008) Ecophysiological responses of Pinus leucodermis at high elevation in the Mediterranean area. Forest@ 5: 28-38. [online: 2008-03-27] URL: http://www.sisef.it/forest@/show.php?id=503. doi: 10.3832/efor0503-0050028

  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:69–78

    Google Scholar 

  • Houghton JT et al (eds) (2001) IPCC, Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 881

    Google Scholar 

  • Kirdyanov AV, Hughes MK, Vaganov EA, Schweingruber FH, Silkin P (2003) The importance of early summer temperature and date of snowmelt for tree growth in the Siberian subarctic. Trees 17:61–69

    Article  Google Scholar 

  • Knight G, Raev I, Staneva M, Chkorev N, Totev St et al (2004) Drought in Bulgaria: a contemporary analog for climate change. Ashgate Studies in Environmental Policy, Ashgate, Burlington, p 336

    Google Scholar 

  • Korner C (1998) A re-assessment of high elevation treeline positions and their explanations. Oecologia 115:445–459

    Article  Google Scholar 

  • Luterbacher J, Xoplaki E (2003) 500-Year winter temperature and precipitation variability over the Mediterranean area and its connection to the large-scale atmospheric circulation. In: Bolle H-J (ed) Mediterranean climate. Variability and trends, Springer, Berlin, pp 133–153

    Google Scholar 

  • Mann ME, Jones PD (2003) Global surface temperatures over the past two millennia. Geophys Res Lett 30(15):1820. doi:10.1029/2003GL017814

    Article  Google Scholar 

  • Neuwirth B, Schweingruber FH, Winiger M (2007) Spatial patterns of central European pointer years from 1901 to 1971. Dendrochronologia 24:79–89

    Article  Google Scholar 

  • Oberhuber W, Kofler W, Pfeifer K, Seeber A, Gruber A, Wieser G (2008) Long-term changes in tree-ring—climate relationships at Mt. Patscherkofel (Tyrol, Austria) since the mid 1980s. Trees 22:31–40

    Article  Google Scholar 

  • Oldenborgh GJ, Burgers G (2005) Searching for decadal variations in ENSO precipitation teleconnections. Geophys Res Lett 32(15):L15701. doi:10.1029/2005GL023110

    Article  Google Scholar 

  • Panayotov MP, Yurukov S (2007) Tree ring chronology from Pinus peuce in Pirin Mts and the possibilities to use it for climate analysis. Phytologia Balcanica 13(3):313–320

    Google Scholar 

  • Pederson N, Cook ER, Jacoby GC, Peteet DM, Griffin KL (2004) The influence of winter temperatures on the annual radial growth of six northern range margin tree species. Dendrochronologia 22:7–29

    Article  Google Scholar 

  • Popa I, Kern Z (2009) Long-term summer temperature reconstruction inferred from tree-ring records from the Eastern Carpathians. Clim dyn 32:1107–1117

    Article  Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T, Morin H, Saracino A, Motta R, Borghetti M (2006) Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length (2006). New Phytol 370:301–310

    Article  Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T, Carrer M (2008) Age-dependent xylogenesis in timberline conifers. New Phytol 177(1):199–208

    PubMed  Google Scholar 

  • Schweingruber FH (1981a) Pinus leucodermis chronologies—Vihren National Park (BGR), Oros—Olympus Mountains (GR) and Sierra da Crispo (ITA). World Data Center for Paleoclimatology Data Contribution Series, Boulder

    Google Scholar 

  • Schweingruber FH (1981b) Pinus peuce chronology—Pelister National Park, Macedonia. World Data Center for Paleoclimatology Data Contribution Series, Boulder

    Google Scholar 

  • Schweingruber FH (1996) Tree rings and environment. Dendroecology, Vienna, p 602

    Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) (2007) IPCC (2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Stokes MA, Smiley TL (1968) An introduction to tree-ring dating. University of Chicago Press, Chicago, p 73

    Google Scholar 

  • Todaro L, Andreu L, D’Alessandro CM, Gutierrez E, Cherubini P, Saracino A (2007) Response of Pinus leucodermis to climate and anthropogenic activity in the National Park of Pollino (Basilicata, southern Italy). Biol Conserv 137:507–519

    Article  Google Scholar 

  • Tranquillini W (1979) Physiological ecology of the alpine timberline–tree existence at high altitudes with special reference to the European Alps. Springler, New York, p 131

    Google Scholar 

  • Vakarelov I, Mirtchev S, Kachaunova E, Simeonova N (2001) Reconstruction of summer air temperatures by dendrochronological analysis of Macedonian pine (Pinus peuce Griseb.) in Pirin mountains (South-eastern Bulgaria). Forestry Ideas 1–4:16–26

    Google Scholar 

  • Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213

    Article  Google Scholar 

  • Xoplaki E, Maheras P, Luterbacher J (2001) Variability of climate in meridional Balkans during the periods 1675–1715 and 1780–1830 and its impact on human life. Clim Change 48:581–615

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science Fund of the University of Forestry in Sofia, Project 115/2008 and by the Velux Foundation, Project No. 414. We would like to thank Mrs. Pravda Dimitrova from the National Meteorological Institute in Sofia for assistance in obtaining climate data. We are grateful to Melissa Martin for improving the English language. Alexander Dountchev, Yanitca Todorova, Albena Ivanova and Neli Nikolova helped in data collection and cores measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Momchil Panayotov.

Additional information

Communicated by H. Cochard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panayotov, M., Bebi, P., Trouet, V. et al. Climate signal in tree-ring chronologies of Pinus peuce and Pinus heldreichii from the Pirin Mountains in Bulgaria. Trees 24, 479–490 (2010). https://doi.org/10.1007/s00468-010-0416-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-010-0416-y

Keywords

Navigation