Skip to main content

Advertisement

Log in

Long-term summer temperature reconstruction inferred from tree-ring records from the Eastern Carpathians

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The first 1,000 year long Carpathian tree-ring width chronology was established based on living and subfossil stone pine (Pinus cembra L.) samples from an upper timberline forest located in Calimani Mts. (Romania). Tree-ring data were standardized using the regional curve standardization method in order to preserve the low and medium frequency climate signals. The de-trended index strongly correlates with summer mean temperature both at annual and decadal scales. The Calimani summer mean temperature anomalies were reconstructed for the period ad 1163-2005 applying the rescaling method. This new climate proxy from the Carpathians shows similar fluctuations to other North Hemispheric temperature reconstructions, but with periods of distinct differences. The fingerprint of Little Ice Age in the Calimani area is visible between ad 1370 and 1630 followed by lagged cold decades in ad 1820 and 1840. The recent warming is evident only after the 1980s in our reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Becker M, Bert GD, Bouchon J, Dupouey JL, Picard JF, Ulrich E (1995) Long-term changes in forest productivity in northeastern France: the dendro-ecological approach. In: Landmann G, Bonneau M (eds) Forest decline and atmospheric deposition ejects in the French mountains. Springer, Berlin, pp 143–156

    Google Scholar 

  • Beniston M (2002) Climate modeling at various spatial and temporal scales: where can dendrochronology help? Dendrochronologia 20:117–131. doi:10.1078/1125-7865-00012

    Article  Google Scholar 

  • Bradley RS, Jones PD (1993) Litte Ice Age summer temperature variations: their nature and relevance to recent global warming trends. Holocene 3(4):367–376. doi:10.1177/095968369300300409

    Article  Google Scholar 

  • Brázdil R, Pfister C, Wanner H, Storch H, Luterbacher J (2005) Historical climatology in Europe—The State of the Art. Clim Change 70:363–430. doi:10.1007/s10584-005-5924-1

    Article  Google Scholar 

  • Briffa KR (2000) Annual climate variability in the Holocene: interpreting the message of ancient trees. Quat Sci Rev 19:87–105. doi:10.1016/S0277-3791(99)00056-6

    Article  Google Scholar 

  • Briffa KR, Jones PD (1990) Basic chronology statistics and assesment. In: Cook E, Kairiukstis L (eds) Methods of dendrochronology: applications in the environmental sciences. Kluwer, pp 137–152

  • Briffa KR, Jones PD, Bartholin TS, Eckstein D, Schweingruber FH, Karlén W et al (1992) Fennoscandinavian summers from ad 500: temperature changes on short and long timescales. Clim Dyn 7:111–119. doi:10.1007/BF00211153

    Article  Google Scholar 

  • Briffa KR, Jones PD, Schweingruber FH, Osborn TJ (1998) Influence of volcanic eruptions on northern hemisphere summer temperature over the past 600 years. Nature 393:450–455. doi:10.1038/30943

    Article  Google Scholar 

  • Briffa KR, Osborn TJ, Schweingruber FH (2004) Large-scale temperature inferences from tree-rings: a review. Glob Planet Change 40:11–26. doi:10.1016/S0921-8181(03)00095-X

    Article  Google Scholar 

  • Briffa KR, Osborn TJ, Schweingruber FH, Jones PD, Shiyatov SG, Vaganov EA (2002) Tree-ring width and density data around the northern Hemisphere: part 2, spatio-temporal variability and associated climate patterns. Holocene 12:759–789. doi:10.1191/0959683602hl588rp

    Article  Google Scholar 

  • Büntgen U, Esper J, Frank DC, Nicolussi K, Schmidhalter M (2005) A 1052-year tree-ring proxy for Alpine summer temperatures. Clim Dyn 25:141–153. doi:10.1007/s00382-005-0028-1

    Article  Google Scholar 

  • Büntgen U, Frank DC, Kaczka RJ, Verstege A, Zwijacz-Kozica T, Esper J (2007) Growth/climate response of a multi-species tree-ring network in the western Carpathian Tatra Mountains, Poland and Slovakia. Tree Physiol 27:687–702

    Google Scholar 

  • Büntgen U, Frank DC, Nievergelt D, Esper J (2006) Alpine summer temperature variations, ad 755–2004. J Clim 19:5606–5623. doi:10.1175/JCLI3917.1

    Article  Google Scholar 

  • Carrer M, Nola P, Eduard JL, Motta R, Urbinati C (2007) Regional variability of climate–growth relationships in Pinus cembra high elevation forests in the Alps. J Ecol 95:1072–1083. doi:10.1111/j.1365-2745.2007.01281.x

    Article  Google Scholar 

  • Casty C, Wanner H, Luterbacher J, Esper J, Böhm R (2005) Temperature and precipitation variability in the European Alps since 1500. Int J Climatol 25:1855–1880. doi:10.1002/joc.1216

    Article  Google Scholar 

  • Cook ER (1985) A time series analysis approach to tree-ring standardization, Ph.D. Dissertation, University of Arizona, Tucson.

  • Cook ER, Krusic PJ (2006) ARSTAN4.1b_XP. http://www.ldeo.columbia.edu.

  • Cook ER, Kairiukstis L (eds) (1990) Methods of dendrochronology: applications in the environmental sciences. Kluwer, p 408

  • D’Arrigo R, Wilson R, Jacoby G (2006) On the long-term context for late twentieth century warming. J Geophys Res 111:D03103. doi:10.1029/2005JD006352

    Article  Google Scholar 

  • Dai J, Mosley-Thompson E, Thompson LG (1991) Ice core evidence for an explosive tropical volcanic eruption 6 years preceding Tambora. J Geophys Res 96:17361–17366. doi:10.1029/91JD01634

    Article  Google Scholar 

  • Efron B (1987) Better bootstrap confidence intervals. J Am Stat Assoc 82:171–185. doi:10.2307/2289144

    Article  Google Scholar 

  • Esper J, Cook ER, Krusic PJ, Peters K, Schweingruber FH (2003) Tests of the RCS method for preserving low-frequency variability in long tree-ring chronologies. Tree Ring Res 59:81–98

    Google Scholar 

  • Esper J, Cook ER, Schweingruber FH (2002) Low–frequency signals in long tree–ring Chronologies for reconstructing past temperature variability. Science 295:2250–2252. doi:10.1126/science.1066208

    Article  Google Scholar 

  • Esper J, Frank DC, Wilson RJS, Briffa KR (2005a) Effect of scaling and regression on reconstructed temperature amplitude for the past millennium. Geophys Res Lett 31. doi:10.1029/2004GLO21236

  • Esper J, Wilson RJS, Frank DC, Moberg A, Wanner H, Luterbacher J (2005b) Climate: past ranges and future changes. Quat Sci Rev 24:2164–2166. doi:10.1016/j.quascirev.2005.07.001

    Article  Google Scholar 

  • Frank D, Esper J, Cook ER (2007) Adjustment for proxy number and coherence in a large-scale temperature reconstruction. Geophys Res Lett 34. doi:10.1029/2007GL030571

  • Frank DC, Esper J (2005a) Characterization and climate response patterns of a high elevation, multi species tree-ring network for the European Alps. Dendrochronologia 22:107–121. doi:10.1016/j.dendro.2005.02.004

    Article  Google Scholar 

  • Frank DC, Esper J (2005b) Temperature reconstructions and comparisons with instrumental data from a tree-ring network for the European Alps. Int J Climatol 25:1437–1454. doi:10.1002/joc.1210

    Article  Google Scholar 

  • Fritts HC (1976) Tree-ring and climate. Academic Press, London, p 567

    Google Scholar 

  • Grissino-Mayer HD (1997) Computer assisted independent observer verification of tree-ring measurements. Tree Ring Bull 54:29–41

    Google Scholar 

  • Guiot J, Nicault A, Rathgeber C, Edouard JL, Guibal F, Pichard G et al (2005) Last-millennium summer-temperature variations in western Europe based on proxy data. Holocene 15:489–500. doi:10.1191/0959683605hl819rp

    Article  Google Scholar 

  • Höhn M (2001) Ecological, morphometrical and diversity studies on Pinus cembra populations in the Kelemen-Mountain (East Carpathians). Kanitzia 9:59–72

    Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurements. Tree Ring Bull 43:69–75

    Google Scholar 

  • Holmes RL (1990) Dendrochronology Program Library—User’s Manual. University of Arizona, Tucson

    Google Scholar 

  • Hunt BG (2006) The Medieval Warm Period, the Little Ice Age and simulated climatic variability. Clim Dyn 27:677–694. doi:10.1007/s00382-006-0153-5

    Article  Google Scholar 

  • IPCC (2007) Climate Change 2007. The Physical Science Basis, p 996.

  • Jansen E, Overpeck J, Briffa KR, Duplessy J-C, Joos F, Masson-Delmotte V et al (2007) Palaeoclimate. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor v, Miller H.L (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Jones PD, Lister D (2004) The development of monthly temperature series for Scotland and northern Ireland. Int J Climatol 24:569–590. doi:10.1002/joc.1017

    Article  Google Scholar 

  • Jones PD, Mann ME (2004) Climate over past millennia. Rev Geophys 42:RG2002. doi:10.1029/2003RG000143

  • Jones PD, Moberg A (2003) Hemispheric and large-scale surface air temperature variations: an extensive revision and an update to 2001. J Clim 16:206–223. doi:10.1175/1520-0442(2003)016

    Article  Google Scholar 

  • Kern Z, Popa I. Changes of frost damage and treeline advance for Swiss stone pine in the Calimani Mts (eastern Carpathians, Romania). Acta Silvatica Lignaria Hung (in press).

  • Körner C (1998) Worldwide positions of alpine treelines and their causes. In: Beniston M, Innes JL (eds) The impacts of climate variability on forests. Springer,Berlin, pp 221–239

    Chapter  Google Scholar 

  • Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31:713–732

    Google Scholar 

  • LaMarche VC (1974) Paleoclimatic inferences from long tree-ring records. Science 183:1043–1048. doi:10.1126/science.183.4129.1043

    Article  Google Scholar 

  • Lamb HH (1965) The early Medieval Warm Epoch and its sequel. Palaeogeogr Palaeoclimatol Palaeoecol 1:13–37. doi:10.1016/0031-0182(65)90004-0

    Article  Google Scholar 

  • Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303:1499–1503. doi:10.1126/science.1093877

    Article  Google Scholar 

  • Mann ME, Bradley RS, Hughes MK (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779–787. doi:10.1038/33859

    Article  Google Scholar 

  • Mann ME, Bradley RS, Hughes MK (1999) Northern hemisphere Temperature during the past millennium: inferences, uncertainties and limitations. Geophys Res Lett 26:759–762. doi:10.1029/1999GL900070

    Article  Google Scholar 

  • Mann ME, Jones PD (2003) Global surface temperatures over the past two millennia. Geophys Res Lett 30(15):1820. doi:10.1029/2003GL017814

    Google Scholar 

  • McIntryre S, McKitrick R (2003) Corrections to the Mann et al. (1998). Proxy-data based and northern hemispheric average temperature series. Energy and environment. 14:751–771. doi:10.1260/095830503322793632

  • Meier N, Rutishauser T, Pfister C, Wanner H, Luterbacher J (2007) Grape harvest dates as a proxy for Swiss April to August temperature reconstructions back to ad 1480. Geophys Res Lett 34:L20705. doi:10.1029/2007GL031381

    Article  Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712. doi:10.1002/joc.1181

    Article  Google Scholar 

  • Mosley-Thompson E, Mashiotta TA, Thompson L (2003) High resolution ice core records of Late Holocene volcanism: current and future contributions from the Greenland PARCA cores. Volcanism and the earth’s atmosphere. Geophys Monogr 139:153–164

    Google Scholar 

  • Norby RJ (1998) Nitrogen deposition: a component of global change analyses. New Phytol 139:189–200. doi:10.1046/j.1469-8137.1998.00183.x

    Article  Google Scholar 

  • Oberhuber W (2004) Influence of climate on radial growth of Pinus cembra within the alpine timberline ecotone. Tree Physiol 24:291–301

    Google Scholar 

  • Oppenheimer C (2003) Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815. Prog Phys Geogr 27:230–259. doi:10.1191/0309133303pp379ra

    Article  Google Scholar 

  • Pfister C, Brázdil R, Barriendos M (2002) Reconstructing past climate and natural disasters in Europe using documentary evidence. PAGES News 10(3):6–8

    Google Scholar 

  • Popa I (2004) Fundamente metodologice şi applicaţii de dendrochronologie. Editura Tehnică Silvică, p 200

  • Popa I (2005a) Dendroclimatological research at Norway spruce (Picea abies (L.) Karst) and Swiss stone pine (Pinus cembra L.) from Ronda Mountains. Proc Romanian Acad Ser B 7:65–70

    Google Scholar 

  • Popa I (2005b) Cu privire la reconstituirea dinamicii istorice a regimului termic al lunii iunie în Munţii Rodnei. Rev Padurilor 4:21–28

    Google Scholar 

  • Popa I, Kern Z, Nagy B (2006) Frost ring: a biological indicator of widespread freezing days, and 1876 ad as a case study from the eastern Carpathians. Proc Romanian Acad Ser B 8:55–61

    Google Scholar 

  • Rapp D (2008) Assessing climate change. Temperatures, solar radiation and heat balance. Springer, 374 p

  • Rinntech (2005) TSAP User reference. 110 p

  • Rutherford S, Mann ME, Osborn TJ, Bradley RS, Briffa KR, Hughes MK et al (2005) Proxy-based northern hemisphere surface temperature reconstructions: sensitivity to method, predictor network, target season and target domain. J Clim 18:2308–2329. doi:10.1175/JCLI3351.1

    Article  Google Scholar 

  • Saurer M, Cherubini P, Ammann M, De Cinti B, Siegwolf R (2004) First detection of nitrogen from NOX in tree-rings: A 15 N/14 N study near a motorway. Atmos Environ 38:2779–2787. doi:10.1016/j.atmosenv.2004.02.037

    Article  Google Scholar 

  • Spiecker H, Mielikainen K, Kohl M, Skovsgaard JP (1996) Growth trends in European forests. European Forest Institute, Springer, Berlin, p 372

    Google Scholar 

  • Stothers RB (1984) The great Tambora eruption in 1815 and its aftermath. Science 224:1191–1198. doi:10.1126/science.224.4654.1191

    Article  Google Scholar 

  • Stuiver M, Braziunas TF (1989) Atmospheric C-14 and century scale solar oscillations. Nature 338:405–408. doi:10.1038/338405a0

    Article  Google Scholar 

  • Tranquillini W (1979) Physiological ecology of the Alpine Timberline. Ecological studies, vol 31. Springer, Berlin

    Google Scholar 

  • Urbinati C, Carrer M, Sodiro S (1997) Dendroclimatic response variability of Pinus cembra L. in upper timberline forests of Italian eastern Alps. Dendrochronologia 15:101–117

    Google Scholar 

  • Wagner S, Zorita E (2005) The influence of volcanic, solar and CO2 forcing on the temperature in the Dalton Minimum (1790–1830) a model study. Clim Dyn 25:205–218. doi:10.1007/s00382-005-0029-0

    Article  Google Scholar 

  • Weiser G, Tausz M (eds) (2007) Trees at their upper limit. Treelife limitation at the Alpine timberline. Plant ecophysiology series. Springer, Berlin, p 233

  • Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213. doi:10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2

    Article  Google Scholar 

  • WMO (1989) Calculation of monthly and annual 30 year standard normals. WCDP No. 10. WMO-TD/No. 341, Geneva

Download references

Acknowledgments

Ionel Popa was supported by the IDEII program, project ID65. Zoltan Kern was partially funded by the Hungarian Science Foundation (OTKA) T 43666 and K67583. The RO-37/2005 bilateral cooperation financed the travel costs. Special thanks to Jonathan G.A. Lageard and Eva Bugya for the English revision of the manuscript. Also thanks for David Frank and Ulf Büntgen for providing their temperature reconstructions. We thank Olivier Bouriaud and two anonymous reviewers for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ionel Popa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popa, I., Kern, Z. Long-term summer temperature reconstruction inferred from tree-ring records from the Eastern Carpathians. Clim Dyn 32, 1107–1117 (2009). https://doi.org/10.1007/s00382-008-0439-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-008-0439-x

Keywords

Navigation