Skip to main content

Advertisement

Log in

Effect of Mn toxicity on morphological and physiological changes in two Populus cathayana populations originating from different habitats

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

The cuttings of Populus cathayana were exposed to four different manganese (Mn) concentrations (0, 0.1, 0.5 and 1 mM) in a greenhouse to investigate the toxicity of Mn and the detoxifying responses of woody plants. Two contrasting populations of P. cathayana, which were from wet and dry climate regions in western China, respectively, were examined in our study. The results showed that high concentration of Mn caused significant decrease in shoot height, biomass accumulation, and leaf number and leaf areas. Injuries to the anatomical features of leaves were also found as the reduced thickness of palisade and spongy parenchyma, the decreased density in the conducting tissue and the collapse and split in the meristematic tissue in the central vein. Moreover, Mn treatments caused the accumulation of hydrogen peroxide (H2O2), and then resulted in oxidative stress indicated by the oxidation of proteins and DNA. Many physiological responses were employed to cope with the toxicity of Mn, including the increase in the contents of non-protein thiol (NP-SH), phytochelatins (PCs) and phenolics compounds and the stimulated activities of guaiacol peroxidase (GPX) and polyphenol oxidase (PPO) for the chelation of Mn and for the antioxidation of reactive oxygen species. The population from dry climate habitat showed a lower leaf concentration of Mn, higher contents of the chelators, and higher activities of GPX and PPO than did the wet climate population at the same Mn treatment, thereby possessing a superior Mn tolerance. In both populations, most of the Mn was accumulated in the shoot, which is favorable regarding phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ali MB, Singh N, Shohael AM, Hahn EJ, Paek KY (2006) Phenolics metabolism and lignin synthesis in root suspension cultures of Panax ginseng in response to copper stress. Plant Sci 171:147–154

    Article  CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Bonham-Smith PC, Kapoor M, Bewley JD (1987) Establishment of thermotolerance in maize by exposure to stresses other than a heat shock does not require heat shock protein synthesis. Plant Physiol 85:575–580

    PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brennan T, Frenkel C (1977) Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiol 59:411–416

    PubMed  CAS  Google Scholar 

  • Burken JG, Schnoor JL (1997) Uptake and metabolism of atrazine by poplar trees. Environ Sci Technol 31:1399–1406

    Article  CAS  Google Scholar 

  • Castiglione S, Wang G, Damiani G, Bandi C, Bisoffi S., Sala F (1993) RAPD fingerprints for identification and for taxonomic studies of elite poplar (Populus spp) clones. Theor Appl Genet 87:54–59

    Article  CAS  Google Scholar 

  • Collins G, Nie XL, Saltveit M (1995) Heat shock proteins and chilling sensitivity of mung bean hypocotyls. J Exp Bot 46:795–802

    Article  CAS  Google Scholar 

  • Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13:393–397

    Article  CAS  Google Scholar 

  • De Vos CHR, Vonk MJ, Vooijs R, Schat H (1992) Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiol 98:853–858

    Article  PubMed  Google Scholar 

  • Di Baccio D, Tognetti R, Sebastiani L, Vitagliano C (2003) Responses of Populus deltoides × Populus nigra (Populus × euramericana) clone I-124 to high zinc concentrations. New Phytol 159:443–452

    Article  CAS  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  PubMed  CAS  Google Scholar 

  • Ferrer AS, Bru R, Cabanes J, Carmona FG (1988) Characterization of catecholase and cresolase activities of monastrell grape polyphenol oxidase. Phytochemistry 27:319–321

    Article  Google Scholar 

  • Foy CD, Lee EH, Rowland R, Devine TE, Buzzell RI (1995) Ozone tolerance related to flavonol glycoside genes in soybean. J Plant Nutr 18:637–647

    CAS  Google Scholar 

  • Gisbert C, Ros R, De Haro A, Walker DJ, Bernal MP, Serrano R, Navarro-Avino J (2003) A plant genetically modified that accumulates Pb is especially promising for Phytoremediation. Biochem Bioph Res Commun 303:440–445

    Article  CAS  Google Scholar 

  • Gullner G, Komives T, Rennenberg H (2001) Enhanced tolerance of transgenic poplar plants overexpressing gamma-glutamylcysteine synthetase towards chloroacetanilide herbicides. J Exp Bot 52:971–979

    Article  PubMed  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  PubMed  CAS  Google Scholar 

  • He Z, Li J, ZH H, Ma M (2005) Different effects of calcium and lanthanum on the expression of phytochelatin synthase gene and cadmium absorption in Lactuca sativa. Plant Sci 168:309–318

    Article  CAS  Google Scholar 

  • Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226

    Article  PubMed  CAS  Google Scholar 

  • Jordahl J, Foster L, Schnoor J, Alvarez PJ (1997) Effect of hybrid poplar trees on microbial populations important to hazardous waste bioremediation. Environ Toxicol Chem 16:1318–1321

    Article  CAS  Google Scholar 

  • Koprivova A, Kopriva S, Jager D, Will B, Jouanin L, Rennenberg H (2002) Evaluation of transgenic poplars over-expressing enzymes of glutathione synthesis for phytoremediation of cadmium. Plant Biol 4:664–670

    Article  CAS  Google Scholar 

  • Kuznetsov V, Rakutin V, Boisova N, Rotschupkin B (1993) Why does heat shock increase salt resistance in cotton plants? Plant Physiol Biochem 31:181–188

    CAS  Google Scholar 

  • Lei Y, Yin C, Li C (2006) Differences in some morphological, physiological, and biochemical responses to drought stress in two contrasting populations of Populus przewalskii. Physiol Plant 127:182–191

    Article  CAS  Google Scholar 

  • Levine RL, Willians JA, Stadtman ER, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. Method Enzymol 233:346–363

    Article  CAS  Google Scholar 

  • Lin C, Kao C (2001) Cell wall peroxidase activity, hydrogen peroxide level and NaCl-inhibited root growth of rice seedlings. Plant Soil 230:135–143

    Article  CAS  Google Scholar 

  • Lin J, Wang G (2002) Doubled CO2 could improve the drought tolerance better in sensitive cultivars than in tolerant cultivars in spring wheat. Plant Sci 163:627–637

    Article  CAS  Google Scholar 

  • May MJ, Vernoux T, Sánchez-Fernández R, Van Montagu M, Inzé D (1998) Evidence for posttranscriptional activation of g-glutamylcysteine synthetase during plant stress response. Proc Natl Acad Sci 95:12049–12054

    Article  PubMed  CAS  Google Scholar 

  • Metwally A, Safronova VI, Belimov AA, Dietz1 KJ (2005) Genotypic variation of the response to cadmium toxicity in Pisum sativum L. J Exp Bot 56:167–178

    PubMed  CAS  Google Scholar 

  • Mishra S, srivastava S, Tripathi RD, Govindarajan R, Kuriakose SV, Prasad MNV (2006) Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol Biochem 44:25–37

    Article  PubMed  CAS  Google Scholar 

  • Moran JF, Becana M, Iturbe-Ormaetxe I, Frechilla S, Klucas RV, Aparicio-Tejo P (1994) Drought induces oxidative stress in pea plants. Planta 194:346–352

    Article  CAS  Google Scholar 

  • Newman LA, Strand SE, Choe N, Duffy J, Ekuan G, Ruszaj M, Shurtleff BB, Wilmoth J, Heilman P, Gordon MP (1997) Uptake and biotransformation of trichloroethylene by hybrid poplars. Environ Sci Technol 31:1062–1067

    Article  CAS  Google Scholar 

  • Orzech KA, Burke JJ (1988) Heat shock and the protection against metal toxicity in wheat leaves. Plant Cell Environ 11:711–714

    Article  CAS  Google Scholar 

  • Pastori GM, Foyer CH (2002) Common components, networks, and pathways of cross-tolerance to stress. The central role of “redox” and abscisic acid-mediated controls. Plant Physiol 129:460–468

    Article  PubMed  CAS  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  PubMed  CAS  Google Scholar 

  • Pittman JK (2005) Managing the manganese: molecular mechanisms of manganese transport and homeostasis. New Phytol 167:733–742

    Article  PubMed  CAS  Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees-a review. Environ Int 29:529–540

    Article  PubMed  CAS  Google Scholar 

  • Punshon T, Dickinson N (1997) Acclimation of Salix to metal stress. New Phytol 137:303–314

    Article  CAS  Google Scholar 

  • Rauser WE (1995) Phytochelatins and related peptides (Structure, Biosynthesis, and Function). Plant Physiol 109:1141–1149

    Article  PubMed  CAS  Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159

    Article  Google Scholar 

  • Robinson BH, Chiarucci A, Brooks RR, Petit D, Kirkman JH, Gregg PEH, De Dominicis V (1997) The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel. J Geochem Explor 59:75–86

    Article  CAS  Google Scholar 

  • Romero-Puertas MC, Palma JM, Gόmez M, del Rio LA, Sandalio LM (2002) Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ 25:677–686

    Article  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  PubMed  CAS  Google Scholar 

  • Shetty KK, Curtis OF, Levin RE, Withowsky R, Ang W (1995) Prevention of vitrification associated with in vitro shoot cultures of oregano (Origanum vulgare) by Pseudomona spp. J Plant Physiol 147:447–451

    CAS  Google Scholar 

  • Shi Q, Zhu Z, Xu M, Qian Q, Yu J (2006) Effect of excess manganese on the antioxidant system in Cucumis satavus L. under two light intensities. Environ Exp Bot 58:197–205

    Article  CAS  Google Scholar 

  • Sinha P, Dube BK, Chatterjee C (2006) Manganese stress alters phytotoxic effects of chromium in green gram physiology (Vigna radiata L.) cv. PU 19. Environ Exp Bot 57:131–138

    Article  CAS  Google Scholar 

  • Smeets K, Cuypers A, Lambrechts A, Semane B, Hoet P, van Laere A, Vangronsveld J (2005) Induction of oxidative stress and antioxidative mechanisms in Phaseolus vulgaris after Cd application. Plant Physiol Biochem 43:437–444

    Article  PubMed  CAS  Google Scholar 

  • Srivastava M, Ma LQ, Singh N, Singh S (2005) Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic. J Exp Bot 56:1335–1342

    Article  PubMed  CAS  Google Scholar 

  • Toppi SDL, Gabbrielli R (1999) Response to cadmium in higher plants. Envrion Exp Bot 41:105–130

    Article  Google Scholar 

  • Vartanian JP, Sala M, Henry M, Hobson SW, Meyerhans A (1999) Manganese cations increase the mutation rate of human immune deficiency virus type 1 ex vivo. J Gen Virol 80:1983–1986

    PubMed  CAS  Google Scholar 

  • Vogeli-Lange R, Wagner GJ (1990) Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaf. Plant Physiol l92:1086–1093

    Google Scholar 

  • Wang W, Xiao Y, Chen L, Lin P (2007) Leaf anatomical responses to periodical waterlogging in simulated semidiurnal tides in mangrove Bruguiera gymnorrhiza seedlings. Aquat Bot 86:223–228

    Article  Google Scholar 

  • Wu F, Chen F, Wei K, Zhang G (2004) Effect of cadmium on free amino acid, glutathione and ascorbic acid concentrations in two barley genotypes (Hordeum vulgare L.) differing in cadmium tolerance. Chemosphere 57:447–454

    Article  PubMed  CAS  Google Scholar 

  • Xiang C, Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10:1539–1550

    Article  PubMed  CAS  Google Scholar 

  • Xue S, Chen Y, Reeves RD, Baker AJM, Lin Q, Fernando DR (2004) Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae). Environ Pollut 131:393–399

    Article  PubMed  CAS  Google Scholar 

  • Yin C, Peng Y, Zang R, Zhu Y, Li C (2005) Adaptive responses of Populus kangdingensis to drought stress. Physiol Plant 123:445–451

    Article  CAS  Google Scholar 

  • Zhang H, Xu W, Guo J, He Z, Ma M (2005) Coordinated responses of phytochelatins and metallothioneins to heavy metals in garlic seedlings. Plant Sci 169:1059–1065

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by the Outstanding Young Scientist Program of the National Natural Science Foundation of China (No. 30525036) and the China National Key Program of the International Cooperation for Science and Technology (No. 2005DFA30620).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyang Li.

Additional information

Communicated by T. Hogetsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, Y., Chen, K., Tian, X. et al. Effect of Mn toxicity on morphological and physiological changes in two Populus cathayana populations originating from different habitats. Trees 21, 569–580 (2007). https://doi.org/10.1007/s00468-007-0152-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-007-0152-0

Keywords

Navigation