Skip to main content
Log in

Temperature sensitivity of nitrogen productivity for Scots pine and Norway spruce

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Environmental conditions control physiological processes in plants and thus their growth. The predicted global warming is expected to accelerate tree growth. However, the growth response is a complex function of several processes with both direct and indirect effects. To analyse this problem we have used needle nitrogen productivity, which is an aggregate parameter for production of new foliage. Data on needle dry matter, production, and nitrogen content in needles of Scots pine ( Pinus sylvestris) and Norway spruce ( Picea abies) from a wide range of climatic conditions were collected and needle nitrogen productivities, defined as dry matter production of needles per unit of nitrogen in the needle biomass, were calculated. Our results show that the nitrogen productivity for spruce is insensitive to temperature. However, for pine, temperature affects both the magnitude of nitrogen productivity at low needle biomass and the response to self-shading but the temperature response is small at the high end of needle biomass. For practical applications it may be sufficient to use a species-specific nitrogen productivity that is independent of temperature. Because temperature affects tree growth indirectly as well as through soil processes, the effects of temperature change on tree growth and ecosystem carbon storage should mainly be derived from effects on nitrogen availability through changes in nitrogen mineralization. In addition, this paper summarises data on dry matter, production and nitrogen content of needles of conifers along a temperature gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ågren GI (1983) Nitrogen productivity of some conifers. Can J For Res 13:494–500

    Google Scholar 

  • Ågren GI (1984) Forest growth and nutrient dynamics. In: Ågren GI (ed) State and change in forest ecosystems—indicators in current research. Report 79. Proceedings from the ESF workshop, Uppsala, Sweden, 21–24 March 1983. Swedish University of Agricultural Science and Department of Ecology and Environmental Research, pp 111–119

  • Ågren GI (1985) Theory for growth of plants derived from the nitrogen productivity concept. Physiol Plant 64:17–28

    Google Scholar 

  • Ågren GI (1996) Nitrogen productivity or photosynthesis minus respiration to calculate plant growth? Oikos 76:529–535

    Google Scholar 

  • Ågren GI, Bosatta E (1998) Theoretical ecosystem ecology. Understanding element cycles. Cambridge University Press, Cambridge

  • Albrektson A, Aronsson A, Tamm CO (1977) The effect of forest fertilization on primary production and nutrient cycling in the forest ecosystems. Silva Fenn 11:233–239

    Google Scholar 

  • Andersson FO, Ågren GI, Erwin F (2000) Sustainable tree biomass production. For Ecol Manage 132:51–62

    Article  Google Scholar 

  • Bazilevich NI (1993) Biological productivity of Northern Eurasia ecosystems. Nauka, Moscow

  • Boot RGA, Schildwacht PM, Lambers H (1992) Partitioning of nitrogen and biomass at a range of N-addition rates and their consequences for growth and gas exchange in two perennial grasses from inland dunes. Physiol Plant 86:152-160

    Article  Google Scholar 

  • Bringmark L (1977) A bioelement budget of an old Scots pine forest in Central Sweden. Silva Fenn 11:201–209

    Google Scholar 

  • Cannell MGR (1982) World forest biomass and primary production data. Academic Press, London

  • Chertov OG, Komarov AS, Karev GP (1999) Modern approach in forest ecosystem modelling. European Forest Institute Research Report 8. Brill, Leiden

  • Churkina G, Running SW (1998) Contrasting climatic controls on the estimated productivity of global terrestrial biomes. Ecosystems 1:206–215

    Article  Google Scholar 

  • Cole DW, Rapp M (1981) Elemental cycling in forest ecosystems. In: Reichle DW (ed) Dynamic properties of forest ecosystems. Cambridge University Press, Cambridge, pp 341–408

  • Day TA, DeLucia EH, Smith WK (1990) Effect of soil temperature on stem sap flow, shoot gas exchange and water potential of Picea engelmannii during snowmelt. Oecologia 84:474–481

    Google Scholar 

  • DeLucia EH (1986) Effects of low root temperature on net photosyntesis, stomatal conductance and carbohydrate concentration in Engelman spruce [ Picea engelmannii (P.) Engelm.] seedlings. Tree Physiol 2:526–533

    Google Scholar 

  • Eberhardt MV, Lee CY, Liu RH (2000) Constraints to growth of boreal forests. Nature 405:904–905

    Article  PubMed  Google Scholar 

  • Ellsworth DS (2000) Seasonal CO2 assimilation and stomatal limitations in a Pinus taeda canopy. Tree Physiol 20:435–445

    PubMed  Google Scholar 

  • Ermolenko PM, Ermolenko LG (1981) Vysotno-pojasnye osobennosti rosta kedra i pichty v zapadnom Sajane. In: Polikarpov NP (ed) Formirovanie i produktivnost drevostoev (in Russian). Nauka, Novosibirsk, pp 19–53

  • Fichtner K, Quick WP, Schulze ED, Mooney HA, Rodermel SR, Bogorad L, Stitt M (1993) Decreased ribulose-1,5-bisphosphate carboxylase-oxygenase in transgenic tobacco transformed with “antisense” rbcS. V. Relationship between photosynthetic rate, storage strategy, biomass allocation and vegetative growth at three different nitrogen supplies. Planta 190:1–9

    CAS  Google Scholar 

  • Grishina LA (1974) Biologichesky krugovorot i ego roll v poc’voobrazovanii (in Russian). Moskovsky universitet, Moscow, pp 55–64

  • Grossnickle SC (2000) Ecophysiology of northern spruce species: the performance of planted seedlings. National Research Press, Ottawa

    Google Scholar 

  • Hennessey TL, Field CB (1991) Circadian rhythms in photosynthesis—oscillations in carbon assimilation and stomatal conductance under constant conditions. Plant Physiol 96:831–836

    CAS  Google Scholar 

  • Ingestad T (1979) A definition of optimum nutrient requirements in birch seedlings. III. Influence of pH and temperature of nutrient solution. Physiol Plant 46:31–35

    CAS  Google Scholar 

  • Ingestad T (1980) Growth, nutrition, and nitrogen fixation in grey alder at varied rate of nitrogen addition. Physiol Plant 50:353–364

    CAS  Google Scholar 

  • Ingestad T (1981) Nutrition and growth of birch and grey alder seedlings in low productivity solutions and at varied relative rates of nutrient addition. Physiol Plant 52:454–466

    CAS  Google Scholar 

  • Källomäki S, Karjalainen T, Mohren F, Lapveteläinen T (2000) General assessment. In: Källomäki S, Karjalainen T, Mohren F, Lapveteläinen T (eds) Expert assessments on the likely impacts of climate change on forests and forestry in Europe. EFI Proceedings 34. European Forest Institute, Joensuu, pp 18–20

  • Karjalainen T, Spiecker H, Laroussinie O (1999) Causes and consequences of accelerating tree growth in Europe. Proceedings of the international seminar held in Nancy, France 14–16 May 1998. EFI Proceedings 27. European Forest Institute, pp 286–287

  • Kaupi PE, Mielikäinen K, Kuusela K (1992) Biomass and carbon budget of European forests 1971 to 1990. Science 256:70–74

    Google Scholar 

  • Klimo E (1980) Nutrient cycling within the ecosystem of a man-made spruce forest. In: Klimo E (ed) Stability of spruce forest ecosystems. International symposium, Brno 1979, University of Agriculture, Brno, pp 363–386

  • Kryazhimskii FA, Bol’shakov VN, Koryukin VI (2001) Man in the light of current ecological problems. Russ J Ecol 32:369–374

    Article  Google Scholar 

  • Küppers M, Koch G, Mooney HA (1988) Compensating effects to growth of changes in dry matter allocation in response to variation in photosynthetic characteristics induced by photoperiod, light and nitrogen. Aust J Plant Physiol 15:287-298

    Google Scholar 

  • Kuuluvainen T (1990) Long-term development of needle mass, radiation interception and stemwood production in naturally regenerated Pinus sylvestris stands on Empetrum - Vaccinium site type in the northern boreal zone in Finland: an analysis based on an empirical study and simulation. For Ecol Manage 46:103–122

    Google Scholar 

  • Kuusela K (1994) Forest resources in Europe 1950–1990. EFI Research raport 1. Cambridge University Press, Cambridge

  • Landhausser SM, DesRochers A, Leiffers VJ (2001) A comparison of growth and physiology in Picea glauca and Populus tremuloides at different soil temperature. Can J For Res 31:1922–1929

    Article  Google Scholar 

  • Lieth H (1975) Modeling the primary productivity of the world. In: Lieth H, Whittaker RH (eds) Primary productivity of the biosphere. Ecological studies, vol 8. Springer, Berlin Heidelberg New York, pp 237–263

  • Lou Y, Medlyn BE, Hui D, Ellsworth DS, Reynolds J, Katul G (2001) Gross primary productivity in Duke forest: modelling synthesis of CO2 experiment and eddy-flux data. Ecol Appl 11:239–252

    Google Scholar 

  • Mäkinen H, Nöjd P, Kahle HP, Neuman U, Tveite B, Mielikäinen K, Röhle H, Spiecker H (2002) Large-scale climatic variability and radial increment variation of Picea abies (L.) Karst. in central and northern Europe. Trees 17:173–184

    Google Scholar 

  • Mälkönen E (1974) Annual primary production and nutrient cycle in some Scots pine stands. Commun Inst For Fenn 84.5:1-87

    Google Scholar 

  • Mälkönen E, Kukkola M (1991) Effect of long-term fertilization on the biomass and nutrient status of Scots pine stands. Fertil Res 27:113–127

    Google Scholar 

  • Man R, Lieffers VI (1997) Seasonal variation of photosynthetic capacities of white spruce ( Picea glauca) and jack pine ( Picea banksiana) saplings. Can J Bot 75:1766–1771

    Google Scholar 

  • Marchenko AI, Karlov EM (1962) Mineralny obmen v elovyh lesah severnoy taygi lesotundry Archangelskoy oblasti (in Russian). Pochvovedenie 7:53–66

    Google Scholar 

  • Mund M, Kummetz E, Hein M, Bauer GA, Schulze ED (2002) Growth and carbon stocks of a spruce forest chronosequence in central Europe. For Ecol Manage 171:275–296

    Article  Google Scholar 

  • NCSFNC (2002) North Carolina State Forest Nutrition Cooperative 31st Annual Report. Department of Forestry. North Carolina State University, Raleigh, N.C.

  • Nihlgård B (1972) Plant biomass, primary production and distribution of chemical elements in a beech and planted spruce forests. Oikos 23:69–81

    Google Scholar 

  • O’Neill RV, DeAngelis DL (1981) Comparative productivity and biomass relations of forest ecosystems. In: Reichle DE (ed) Dynamic properties of forest ecosystems. International Biological Programme 23. Cambridge University Press, Cambridge, pp 341–409

  • Ovington J D (1957) Dry-matter production in Pinus sylvestris L. Ann Bot 21:288–315

    Google Scholar 

  • Persson T, van Oene H, Harrisson AF, Karlsson PS, Bauer GA, Cerny J, Couteaux MM, Dambrine E, Högberg P, Kjöller A, Matteucci G, Rudebeck A, Schulze ED, Pages T (2000) Experimental sites in the NIPHYS/CANIF Project. In: Schulze E-D (ed) Carbon and nitrogen cycling in European forest ecosystems. Ecological studies, vol 142. Springer, Berlin Heidelberg New York, pp 14–46

  • Pyavchenko NI (1967) On the biological productivity and matter turn-over in the swamp forests of Western Siberia (in Russian). Lesovedenie 3:32–43

    Google Scholar 

  • Ryan MG, Waring RH (1992) Maintenance respiration and stand development in a subalpine lodgepole pine forest. Ecology 73:2100-2108

    Google Scholar 

  • Scarascia-Mugnozza G, Bauer GA, Persson H, Matteucci G, Masci A (2000) Tree biomass, growth and nutrient pools. In: Schulze E-D (ed) Carbon and nitrogen cycling in European forest ecosystems. Ecological studies, vol 142. Springer, Berlin Heidelberg New York, pp 49–62

  • Smoljak LP, Petrov EG (1978) Vodnoe pitanie i produktivnost sosnovych fitocenozov (in Russian). Nauka i technika, Minsk

  • Smoljaninov II (1969) Biologichesky krugovorot veschestv i povyschenie produktivnosti lesov (in Russian). Lesnaja promyschlennost, Moscow

  • Spiecker H, Mielikäinen K, Köhl M, Skovsgaard JP (eds) (1996) Growth trends in European forests—studies from twelve countries. EFI Research Report 5. Springer, Berlin Heidelberg New York

  • Sudnitsyna TN (1967) Nitratnoe pitanie sosny v kulturach razlichnoy plotnosti nasazhdeniy (in Russian). Lesovedenie 2:67–73

    Google Scholar 

  • Tamm CO (1974) Experiments to analyse the behaviour of a young spruce forest at different nutrient levels. Proceedings of the First International Congress of Ecology, September 8–14, The Hague, The Netherlands, pp 266–272

  • Tamm CO (1975) Plant nutrient as limiting factors in ecosystem dynamics. In: Productivity of world ecosystems. Proceedings of a Symposium. Presented August 31 to September 1, 1972, at the 5th General Assembly of the Special Committee for the IBP, Seattle, Washington, D.C., National Academy of Science, pp 123–132

  • Tarasov AI (1968) Variability of year increment of spruce in diameter in connection with degree of trees’ suppression and weather alterations (in Russian). Lesovedenie 2:24–32

    Google Scholar 

  • Teskey RO, Gholz HL, Cropper WP (1994) Influence of climate and fertilization on net photosynthesis of mature slash pine. Tree Physiol 14:1215–1227

    Google Scholar 

  • Usoltsev VA (2001) Forest bioproductivity of northern Eurasia: database and geography. Uro PAN, Yekaterinburg

    Google Scholar 

  • Utkin AI (1988) Analysis of productive structure of stand (in Russian). Nauka, Moscow

  • Waring RH (1983) Estimating forest growth and efficiency in relation to canopy leaf area. Adv Ecol Res 13:327–354

    Google Scholar 

  • Wikström F, Ågren GI (1995) The relationship between the growth rate of young plants and their total-N concentrations is unique and simple: a comment. Ann Bot 75:541–544

    Article  Google Scholar 

  • Wright TW, Will GM (1958) The nutrient content of Scots pine and Corsican pine growing on sand dunes. Forestry 31:13–25

    CAS  Google Scholar 

  • Young PC, Beven KJ (1994) Data-based mechanistic modelling and rainfall-flow non-linearity. Environmetrics 5:335–363

    Google Scholar 

  • Yurkevich ID, Yaroshevich EP (1974) Biological productivity of types and associations of pine forests, according to investigations in the BSSR. (in Russian). Nauka I Teknika, Minsk

  • Zavitkovski J, Isebrands JG, Crow TR (1974) Applications of growth analysis in forest biomass studies. Proceedings of the Third North American Forest Biology Workshop, 9-12 September 1974, Colorado State University

  • Ziska LB, Bunce JA (1997) The role of temperature in determining the stimulation of CO2 assimilation at elevated carbon dioxide concentration in soybean seedlings. Physiol Plant 100:126–132

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the EU-financed project Recognition (FAIR6 CT98–4124). We thank Oleg Chertov and Alex Komarov for their help during the preparation of this manuscript and for comments on an earlier version of the paper. We appreciate comments by Vladimir Usoltsev and the particularly thoughtful remarks by Irina Ryzhova. We also thank Lee Allen for providing the comment from North Carolina State Forest Nutrition Cooperative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Ladanai.

Appendices

Appendix 1

Data on Pinus sylvestris stands

Mean annual temperature T (°C), total and current needle biomasses (t/ha), amount of nitrogen in needle biomass (kg/ha), nitrogen productivity (P N) in Pinus sylvestris stands of different ages (years)

Location

Age

T

Total needle

Current needle

Amount of N in needle

P N

Reference

Russia, W.Siberia, Tomsk

130

−1.5

2.26

0.85

24.48

34.72

Pyavchenko1967

Russia, Yaroslavl

57

3.4

6.78

2.39

96.28

24.82

Utkin 1988

Russia, Yaroslavl

41

3.4

9.02

3.42

144.32

23.70

Utkin 1988

Finland, south

28

3.8

2.32

0.90

25.60

35.16

Mälkönen and Kukkola 1991

Finland, south

45

3.8

3.54

1.38

43.50

31.72

Mälkönen and Kukkola 1991

Finland, south

48

3.8

3.90

1.75

49.11

35.63

Mälkönen and Kukkola 1991

Finland, south

48

3.8

3.96

1.72

55.27

32.21

Mälkönen and Kukkola 1991

Finland, south

47

3.8

4.03

1.57

50.73

30.87

Mälkönen and Kukkola 1991

Finland, south

47

3.8

4.04

1.66

50.87

32.53

Mälkönen and Kukkola 1991

Finland, south

48

3.8

4.39

1.72

55.27

31.03

Mälkönen and Kukkola 1991

Finland, south

48

3.8

4.40

1.82

55.46

32.78

Mälkönen and Kukkola 1991

Finland, south

47

3.8

4.41

1.67

55.55

29.99

Mälkönen and Kukkola 1991

Finland, south

47

3.8

4.43

1.67

55.55

31.41

Mälkönen and Kukkola 1991

Finland, south

48

3.8

4.54

1.72

55.27

34.13

Mälkönen and Kukkola 1991

Finland, south

47

3.8

4.55

1.64

57.37

28.50

Mälkönen and Kukkola 1991

Finland, south

48

3.8

4.60

1.97

58.02

33.97

Mälkönen and Kukkola 1991

Finland, south

68

3.8

4.68

1.64

58.99

27.85

Mälkönen and Kukkola 1991

Finland, south

68

3.8

4.76

1.61

59.99

26.75

Mälkönen and Kukkola 1991

Russia, Moscow

17

3.8

4.80

2.24

67.40

33.24

Sudnitsyna 1967

Finland, south

48

3.8

5.05

2.31

63.68

36.28

Mälkönen and Kukkola 1991

Finland, south

68

3.8

5.11

1.62

64.35

25.24

Mälkönen 1974

Finland, south

68

3.8

6.02

2.18

75.80

28.73

Mälkönen 1974

Russia, Moscow

17

3.8

7.20

2.74

89.70

30.55

Sudnitsyna 1967

Russia, Moscow

17

3.8

7.50

2.61

100.90

25.87

Sudnitsyna, 1967

Sweden, Jädraås

120–150

4.0

3.94

1.26

50.70

24.89

Bringmark 1977

Sweden, Lisselbo E40

25

5.4

3.61

1.19

40.70

29.26

Albrektson et al. 1977

Sweden, Lisselbo E40

25

5.4

6.21

2.42

134.90

17.90

Albrektson et al. 1977

Sweden, Lisselbo E40

25

5.4

6.63

2.53

98.80

25.62

Albrektson et al. 1977

Sweden, Lisselbo E40

25

5.4

7.27

2.50

116.10

21.49

Albrektson et al. 1977

Sweden, Lisselbo E40

25

5.4

7.31

2.30

97.10

23.67

Albrektson et al. 1977

Byelorussia, Smolevichi

6

5.5

1.08

0.43

13.90

30.94

Yurkevich 1974

Byelorussia, Vasilevichi

53

6.2

3.85

1.91

58.14

32.85

Smoljak and Petrov 1978

Byelorussia, Vasilevichi

44

6.2

4.78

2.11

72.18

29.23

Smoljak and Petrov 1978

Byelorussia, Vasilevichi

43

6.2

4.79

2.07

72.33

28.62

Smoljak and Petrov 1978

Byelorussia, Vasilevichi

42

6.2

5.56

2.20

83.96

26.20

Smoljak and Petrov 1978

Byelorussia, Vasilevichi

27

6.2

5.61

2.05

84.71

24.20

Smoljak and Petrov 1978

Byelorussia, Vasilevichi

56

6.2

5.62

2.23

84.86

26.28

Smoljak and Petrov 1978

Byelorussia, Vasilevichi

36

6.2

5.82

2.40

87.88

27.31

Smoljak and Petrov 1978

Byelorussia, Ozarichi

54

6.2

6.55

2.24

98.91

22.65

Smoljak and Petrov 1978

Byelorussia, Ozarichi

51

6.2

6.60

2.38

99.66

23.88

Smoljak and Petrov 1978

Byelorussia, Ozarichi

51

6.2

6.93

2.96

104.63

28.29

Smoljak and Petrov 1978

Byelorussia, Osipovichi

8

6.3

1.62

0.50

21.06

23.71

Yurkevich and Yaroshevich1974

Ukraina, Roven’

90

6.8

2.80

1.90

50.90

37.33

Smoljaninov, 1969

Byelorussia, Ivacevichi

43

6.8

3.87

1.20

58.44

20.53

Smoljak and Petrov 1978

Byelorussia, Ivacevichi

60

6.8

4.25

1.37

64.18

21.35

Smoljak and Petrov 1978

Byelorussia, Ivacevichi

47

6.8

5.30

1.68

80.03

20.99

Smoljak and Petrov 1978

Byelorussia, Ivacevichi

64

6.8

5.53

1.84

83.50

22.04

Smoljak and Petrov 1978

Byelorussia, Ivacevichi

43

6.8

5.94

1.86

89.69

20.74

Smoljak and Petrov 1978

Byelorussia, Ivacevichi

44

6.8

6.62

2.45

99.96

24.51

Smoljak and Petrov 1978

Byelorussia, Ivacevichi

45

6.8

6.85

2.50

103.44

24.17

Smoljak and Petrov 1978

Byelorussia, Kobrichi

47

7.3

4.20

1.72

63.42

27.13

Smoljak and Petrov 1978

Byelorussia, Kobrichi

49

7.3

7.49

2.37

113.10

20.96

Smoljak and Petrov 1978

Byelorussia, Kobrichi

50

7.3

7.81

3.17

117.93

26.88

Smoljak and Petrov 1978

Byelorussia, Kobrichi

50

7.3

8.32

2.87

125.63

22.84

Smoljak and Petrov 1978

Byelorussia, Kobrichi

49

7.3

8.34

2.86

125.93

22.71

Smoljak and Petrov 1978

Byelorussia, Kobrichi

40

7.3

9.00

2.70

135.90

19.87

Smoljak and Petrov 1978

Scotland, Morayshire

64

8.2

4.71

1.56

50.44

30.93

Wright et.al. 1958

Appendix 2

Data on Picea abies stands

Mean annual temperature T (°C), total and current needle biomasses (t/ha), amount of nitrogen in needle biomass (kg/ha), nitrogen productivity ( P N) in Picea abies stands of different ages (years)

Location

Age

T

Total needle

Current needle

Amount of N in needle

P N

References

Sweden, Stråsan, E26A

10–15

3.2

4.06

0.87

44

19.77

Tamm 1974

Sweden, Stråsan, E26A

10–15

3.2

4.00

0.83

43

19.30

Tamm 1974

Sweden, Stråsan, E26A

10–15

3.2

7.49

1.57

109

14.40

Tamm 1974

Sweden, Stråsan, E26A

10–15

3.2

10.71

2.51

156

16.09

Tamm 1974

Sweden, Stråsan, E26A

10–15

3.2

13.96

3.43

272

12.61

Tamm 1974

Sweden, Stråsan, E26A

10–15

3.2

7.82

1.96

153

12.81

Tamm 1974

Sweden, Stråsan, E26A

10–15

3.2

11.14

2.78

235

11.83

Tamm 1974

Sweden, Stråsan, E26A

10–15

3.2

12.00

2.95

253

11.66

Tamm 1974

Sweden, Stråsan, E26A

10–15

3.2

9.67

2,78

189

14.71

Tamm 1974

Sweden, Stråsan, E26A

10–15

3.2

6.57

1.86

128

14.53

Tamm 1974

UK, Thetford Chase

11

3.2

5.80

2.54

125

20.32

Ovington 1957

UK, Thetford Chase

14

7.8

6.69

3.16

150

21.07

Ovington 1957

UK, Thetford Chase

17

7.8

8.97

3.95

250

15.80

Ovington 1957

UK, Thetford Chase

20

7.8

10.48

4.37

290

15.07

Ovington 1957

UK, Thetford Chase

23

7.8

5.06

2.62

225

11.64

Ovington 1957

Sweden, Hökaberg, E1

23

7.5

13.4

2.60

145

27.85

Tamm 1975

Sweden, Hökaberg, E1

23

7.5

11.77

2.35

127

26.75

Tamm 1975

Sweden, Hökaberg, E1

23

7.5

11.58

2.25

130

33.24

Tamm 1975

Sweden, Hökaberg, E1

23

7.5

15.53

2.91

175

36.28

Tamm 1975

Sweden, Hökaberg, E1

23

7.5

12.94

2.56

220

25.24

Tamm 1975

Sweden, Hökaberg, E1

23

7.5

14.9

2.81

253

28.73

Tamm 1975

Sweden, Hökaberg, E1

23

7.5

12.68

2.45

316

30.55

Tamm 1975

Sweden, Hökaberg, E1

23

7.5

14.36

2.71

358

25.87

Tamm 1975

UK, Thetford Chase

31

7.8

8.28

4.01

240

16.70

Ovington 1957

Sweden, Skogaby

31

7.6

14.00

2.50

169

14.81

Persson et al. 2000; Scarascia-Mugnozza et al. 2000

Germany, Solling

34

5.9

18.9

2.98

248

12.02

Cole and Rapp 1981

UK, Thetford Chase

35

7.8

9.83

3.46

300

11.53

Ovington 1957

Italy, Monte di Mezzo

37

8.5

16.8

2.80

147

19.01

Persson et al. 2000; Scarascia-Mugnozza et al. 2000

Sweden, Skåne

55

7.6

18.00

2.60

220

11.82

Nihlgård 1972

UK, Thetford Chase

55

7.8

7.24

3.58

245

14.61

Ovington 1957

Czechoslovakia

70

5.5

20.6

3.25

251

12.95

Klimo 1980

Denmark, Klosterhede

76

7,5

15.00

1.00

188

5.31

Persson et al. 2000; Scarascia-Mugnozza et al. 2000

Russia, Valday

80

5.0

25.55

2.85

526

5.41

Grishina 1974

Germany, Hoeglwald

85

8.2

17.00

5.60

238

23.53

H. Persson et al, personal communication

Russia, north Dvina

50

−0.9

12.52

2.19

140

15.62

Bazilevich 1983

Russia, Onezhskoe see

50

2.2

9.86

2.20

119

18.55

Bazilevich 1983

Russia, Valday hight

50

4.75

13.91

2.95

127

23.31

Bazilevich 1983

Russia, Chibiny, 500 m

50

0.5

5.15

1.38

49

27.91

Bazilevich 1983

Russia, Gulf of Finland

50

4.1

18.28

3.39

164

20.65

Bazilevich 1983

Germany, Solling

87

5.9

17.9

2.90

228

12.72

Cole and Rapp 1981

France, Aubure

92

5.4

9.20

2.10

129

16.32

Persson et al. 2000; Scarascia-Mugnozza et al. 2000

Germany, Solling

115

5.9

12.7

2.12

161

13.17

Cole and Rapp 1981

Sweden Jädraås

120–150

4.0

3.94

1.26

51

24.89

Bringmark 1977

Germany, Waldstein

142

5.5

16.60

4.70

242

19.45

Persson et al. 2000; Scarascia-Mugnozza et al. 2000

Czech Republic, Nacetin

568

5.9

13.3

3.60

203

17.75

Persson et al. 2000

Russia, Archangel province

200

−0.2

16.27

2.20

210

10.49

Marchenko and Karlov 1962

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ladanai, S., Ågren, G.I. Temperature sensitivity of nitrogen productivity for Scots pine and Norway spruce. Trees 18, 312–319 (2004). https://doi.org/10.1007/s00468-003-0308-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-003-0308-5

Keywords

Navigation