Skip to main content

Advertisement

Log in

Genetics of kidney disorders in Phelan-McDermid syndrome: evidence from 357 registry participants

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Phelan-McDermid syndrome (PMS) is a rare genetic disorder caused by SHANK3 pathogenic variants or chromosomal rearrangements affecting the chromosome 22q13 region. Previous research found that kidney disorders, primarily congenital anomalies of the kidney and urinary tract, are common in people with PMS, yet research into candidate genes has been hampered by small study sizes and lack of attention to these problems.

Methods

We used a cohort of 357 people from the Phelan-McDermid Syndrome Foundation International Registry to investigate the prevalence of kidney disorders in PMS using a cross-sectional design and to identify 22q13 genes contributing to these disorders.

Results

Kidney disorders reported included vesicoureteral reflux (n = 37), hydronephrosis (n = 36), dysplastic kidneys (n = 19), increased kidney size (n = 19), polycystic kidneys (15 cases), and kidney stones (n = 4). Out of 315 subjects with a 22q13 deletion, 101 (32%) had at least one kidney disorder, while only one out of 42 (2%) individuals with a SHANK3 pathogenic variant had a kidney disorder (increased kidney size). We identified two genomic regions that were significantly associated with having a kidney disorder with the peak associations observed near positions approximately 5 Mb and 400 Kb from the telomere.

Conclusions

The candidate genes for kidney disorders include FBLN1, WNT7B, UPK3A, CELSR1, and PLXNB2. This study demonstrates the utility of patient registries for uncovering genetic contributions to rare diseases. Future work should focus on functional studies for these genes to assess their potential pathogenic contribution to the different subsets of kidney disorders.

Graphical abstract

A higher resolution version of the Graphical abstract is available as Supplementary information

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The deidentified data for this analysis was obtained from the Phelan-McDermid Syndrome International Registry (now known as DataHub) of the Phelan-McDermid Syndrome Foundation. Thus, requests for data should be directed to the owners of the data at the PMSF.

References

  1. Phelan K, Rogers RC, Boccuto L (2018) Phelan-McDermid syndrome. In: Adam Margaret P, Ardinger Holly H, Pagon Roberta A et al (eds) GeneReviews®. University of Washington, Seattle, Seattle (WA)

    Google Scholar 

  2. Phelan K, Boccuto L, Powell CM, Boeckers TM, van Ravenswaaij-Arts C, Rogers RC, Sala C, Verpelli C, Thurm A, Bennett WE, Winrow CJ, Garrison SR, Toro R, Bourgeron T (2022) Phelan-McDermid syndrome: a classification system after 30 years of experience. Orphanet J Rare Dis 17:27

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ricciardello A, Tomaiuolo P, Persico AM (2021) Genotype-phenotype correlation in Phelan-McDermid syndrome: a comprehensive review of chromosome 22q13 deleted genes. Am J Med Genet A 185:2211–2233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nevado J, García-Miñaúr S, Palomares-Bralo M, Vallespín E, Guillén-Navarro E, Rosell J, Bel-Fenellós C, Mori MÁ, Milá M, Del Campo M, Barrúz P, Santos-Simarro F, Obregón G, Orellana C, Pachajoa H, Tenorio JA, Galán E, Cigudosa JC, Moresco A, Saleme C, Castillo S, Gabau E, Pérez-Jurado L, Barcia A, Martín MS, Mansilla E, Vallcorba I, García-Murillo P, Cammarata-Scalisi F, Gonçalves Pereira N, Blanco-Lago R, Serrano M, Ortigoza-Escobar JD, Gener B, Seidel VA, Tirado P, Lapunzina P (2022) Variability in Phelan-McDermid syndrome in a cohort of 210 individuals. Front Genet 13:652454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Verhoeven WMA, Egger JIM, de Leeuw N (2020) A longitudinal perspective on the pharmacotherapy of 24 adult patients with Phelan McDermid syndrome. Eur J Med Genet 63:103751

    Article  PubMed  Google Scholar 

  6. Palumbo P, Accadia M, Leone MP, Palladino T, Stallone R, Carella M, Palumbo O (2018) Clinical and molecular characterization of an emerging chromosome 22q13.31 microdeletion syndrome. Am J Med Genet A 176:391–398

    Article  CAS  PubMed  Google Scholar 

  7. Samogy-Costa CI, Varella-Branco E, Monfardini F, Ferraz H, Fock RA, Barbosa RHA, Pessoa ALS, Perez ABA, Lourenço N, Vibranovski M, Krepischi A, Rosenberg C, Passos-Bueno MR (2019) A Brazilian cohort of individuals with Phelan-McDermid syndrome: genotype-phenotype correlation and identification of an atypical case. J Neurodev Disord 11:13

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sarasua SM, Boccuto L, Sharp JL, Dwivedi A, Chen C, Rollins JD, Rogers RC, Phelan K, DuPont BR (2014) Clinical and genomic evaluation of 201 patients with Phelan-McDermid syndrome. Hum Genet 133:847–859

    Article  CAS  PubMed  Google Scholar 

  9. Soorya L, Kolevzon A, Zweifach J, Lim T, Dobry Y, Schwartz L, Frank Y, Wang AT, Cai G, Parkhomenko E, Halpern D, Grodberg D, Angarita B, Willner JP, Yang A, Canitano R, Chaplin W, Betancur C, Buxbaum JD (2013) Prospective investigation of autism and genotype-phenotype correlations in 22q13 deletion syndrome and SHANK3 deficiency. Mol Autism 4:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. De Rubeis S, Siper PM, Durkin A, Weissman J, Muratet F, Halpern D, Trelles MDP, Frank Y, Lozano R, Wang AT, Holder JL, Betancur C, Buxbaum JD, Kolevzon A (2018) Delineation of the genetic and clinical spectrum of Phelan-McDermid syndrome caused by SHANK3 point mutations. Mol Autism 9:31

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kothari C, Wack M, Hassen-Khodja C, Finan S, Savova G, O’Boyle M, Bliss G, Cornell A, Horn EJ, Davis R, Jacobs J, Kohane I, Avillach P (2018) Phelan-McDermid syndrome data network: integrating patient reported outcomes with clinical notes and curated genetic reports. Am J Med Genet B Neuropsychiatr Genet 177:613–624

    Article  PubMed  Google Scholar 

  12. Haeussler M, Zweig AS, Tyner C, Speir ML, Rosenbloom KR, Raney BJ, Lee CM, Lee BT, Hinrichs AS, Gonzalez JN, Gibson D, Diekhans M, Clawson H, Casper J, Barber GP, Haussler D, Kuhn RM, Kent WJ (2019) The UCSC genome browser database: 2019 update. Nucleic Acids Res 47:D853–D858

    Article  CAS  PubMed  Google Scholar 

  13. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D (2002) The human genome browser at UCSC. Genome Res 12:996–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McCoy MD, Sarasua SM, DeLuca JM, Davis S, Phelan K, Rogers RC, Boccuto L (2022) State of the science for kidney disorders in Phelan-McDermid syndrome: UPK3A, FBLN1, WNT7B, and CELSR1 as candidate genes. Genes (Basel) 13:1042

    Article  CAS  PubMed  Google Scholar 

  15. Chen J, Bardes EE, Aronow BJ, Jegga AG (2009) ToppGene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res 37:305

    Article  Google Scholar 

  16. Bertoli Avella A, Conte ML, Punzo F, Graaf B, Lama G, La Manna A, Polito C, Grassia C, Nobili B, Rambaldi PF, Oostra B, Perrotta S (2008) ROBO2 gene variants are associated with familial vesicoureteral reflux. Am Soc Nephrol J 19:825–831

    Article  CAS  Google Scholar 

  17. Vivante A, Kohl S, Hwang D, Dworschak GC, Hildebrandt F (2014) Single-gene causes of congenital anomalies of the kidney and urinary tract (CAKUT) in humans. Pediatr Nephrol 29:695

    Article  PubMed  PubMed Central  Google Scholar 

  18. Murugapoopathy V, Gupta IR (2020) A primer on congenital anomalies of the kidneys and urinary tracts (CAKUT). Clin J Am Soc Nephrol 15:723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hu F, Sun L (2019) Recognizable type of pituitary, heart, kidney and skeletal dysplasia mostly caused by SEMA3A mutation: A case report. World J Clin Cases 7:3310–3315

    Article  PubMed  PubMed Central  Google Scholar 

  20. Brophy PD, Rasmussen M, Parida M, Bonde G, Darbro BW, Hong X, Clarke JC, Peterson KA, Denegre J, Schneider M, Sussman CR, Sunde L, Lildballe DL, Hertz JM, Cornell RA, Murray SA, Manak JR (2017) A gene implicated in activation of retinoic acid receptor targets is a novel renal agenesis gene in humans. Genetics 207:215–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Humbert C, Silbermann F, Morar B, Parisot M, Zarhrate M, Masson C, Tores F, Blanchet P, Perez M, Petrov Y, Khau Van Kien P, Roume J, Leroy B, Gribouval O, Kalaydjieva L, Heidet L, Salomon R, Antignac C, Benmerah A, Saunier S, Jeanpierre C (2014) Integrin alpha 8 recessive mutations are responsible for bilateral renal agenesis in humans. Am J Hum Genet 94:288–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, Collins RL, Laricchia KM, Ganna A, Birnbaum DP, Gauthier LD, Brand H, Solomonson M, Watts NA, Rhodes D, Singer-Berk M, England EM, Seaby EG, Kosmicki JA, Walters RK, Tashman K, Farjoun Y, Banks E, Poterba T, Wang A, Seed C, Whiffin N, Chong JX, Samocha KE, Pierce-Hoffman E, Zappala Z, O’Donnell-Luria AH, Minikel EV, Weisburd B, Lek M, Ware JS, Vittal C, Armean IM, Bergelson L, Cibulskis K, Connolly KM, Covarrubias M, Donnelly S, Ferriera S, Gabriel S, Gentry J, Gupta N, Jeandet T, Kaplan D, Llanwarne C, Munshi R, Novod S, Petrillo N, Roazen D, Ruano-Rubio V, Saltzman A, Schleicher M, Soto J, Tibbetts K, Tolonen C, Wade G, Talkowski ME, Neale BM, Daly MJ, MacArthur DG (2020) The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581:434–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huang N, Lee I, Marcotte EM, Hurles ME (2010) Characterising and predicting haploinsufficiency in the human genome. Plos Genet 6:e1001154

    Article  PubMed  PubMed Central  Google Scholar 

  24. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hays T, Thompson MV, Bateman DA, Sahni R, Tolia VN, Clark RH, Gharavi AG (2022) The prevalence and clinical significance of congenital anomalies of the kidney and urinary tract in preterm infants. JAMA Netw Open 5:e2231626

    Article  PubMed  PubMed Central  Google Scholar 

  26. Skalická K, Hrčková G, Vaská A, Baranyaiová A, Janega P, Žilinská Z, Daniš D, Kovács L (2017) Pilot study of the occurrence of somatic mutations in ciliary signalling pathways as a contribution factor to autosomal dominant polycystic kidney development. Folia Biol (Praha) 63:174–181

    PubMed  Google Scholar 

  27. Aguilar A (2016) Development: Celsr1 and Vangl2 team up to pattern the kidney. Nat Rev Nephrol 12:651

    Article  CAS  PubMed  Google Scholar 

  28. Brzóska HŁ, d’Esposito AM, Kolatsi-Joannou M, Patel V, Igarashi P, Lei Y, Finnell RH, Lythgoe MF, Woolf AS, Papakrivopoulou E, Long DA (2016) Planar cell polarity genes Celsr1 and Vangl2 are necessary for kidney growth, differentiation, and rostrocaudal patterning. Kidney Int 90:1274–1284

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yates LL, Papakrivopoulou J, Long DA, Goggolidou P, Connolly JO, Woolf AS, Dean CH (2010) The planar cell polarity gene Vangl2 is required for mammalian kidney-branching morphogenesis and glomerular maturation. Hum Mol Genet 19:4663–4676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang B, Tran U, Wessely O (2011) Expression of wnt signaling components during xenopus pronephros development. PLoS One 6:e26533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kagan M, Pleniceanu O, Vivante A (2022) The genetic basis of congenital anomalies of the kidney and urinary tract. Pediatr Nephrol 37:2231–2243

    Article  PubMed  Google Scholar 

  32. Edgar R, Mazor Y, Rinon A, Blumenthal J, Golan Y, Buzhor E, Livnat I, Ben-Ari S, Lieder I, Shitrit A, Gilboa Y, Ben-Yehudah A, Edri O, Shraga N, Bogoch Y, Leshansky L, Aharoni S, West MD, Warshawsky D, Shtrichman R (2013) LifeMap discovery™: the embryonic development, stem cells, and regenerative medicine research portal. Plos One 8:e66629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ahn YH, Lee C, Kim NKD, Park E, Kang HG, Ha I, Park W, Cheong HI (2020) Targeted exome sequencing provided comprehensive genetic diagnosis of congenital anomalies of the kidney and urinary tract. J Clin Med 9:751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cordell HJ, Darlay R, Charoen P, Stewart A, Gullett AM, Lambert HJ, Malcolm S, Feather SA, Goodship THJ, Woolf AS, Kenda RB, Goodship JA (2010) Whole-genome linkage and association scan in primary, nonsyndromic vesicoureteric reflux. J Am Soc Nephrol 21:113–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. van Eerde AM, Koeleman BPC, van de Kamp JM, de Jong TPVM, Wijmenga C, Giltay JC (2007) Linkage study of 14 candidate genes and loci in four large dutch families with vesico-ureteral reflux. Pediatr Nephrol 22:1129–1133

    Article  PubMed  PubMed Central  Google Scholar 

  36. van Eerde AM, Duran K, van Riel E, de Kovel CGF, Koeleman BPC, Knoers NVAM, Renkema KY, van der Horst HJR, Bökenkamp A, van Hagen JM, van den Berg LH, Wolffenbuttel KP, van den Hoek J, Feitz WF, de Jong TPVM, Giltay JC, Wijmenga C (2012) Genes in the ureteric budding pathway: association study on vesico-ureteral reflux patients. PLoS ONE 7:e31327

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jenkins D, Bitner-Glindzicz M, Malcolm S, Hu CA, Allison J, Winyard PJD, Gullett AM, Thomas DFM, Belk RA, Feather SA, Sun T, Woolf AS (2005) De novo uroplakin IIIa heterozygous mutations cause human renal adysplasia leading to severe kidney failure. J Am Soc Nephrol 16:2141–2149

    Article  CAS  PubMed  Google Scholar 

  38. Schönfelder E, Knüppel T, Tasic V, Miljkovic P, Konrad M, Wühl E, Antignac C, Bakkaloglu A, Schaefer F, Weber S (2006) Mutations in uroplakin IIIA are a rare cause of renal hypodysplasia in humans. Am J Kidney Dis 47:1004–1012

    Article  PubMed  Google Scholar 

  39. Hwang D, Dworschak GC, Kohl S, Saisawat P, Vivante A, Hilger AC, Reutter HM, Soliman NA, Bogdanovic R, Kehinde EO, Tasic V, Hildebrandt F (2014) Mutations in 12 known dominant disease-causing genes clarify many congenital anomalies of the kidney and urinary tract. Kidney Int 85:1429–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kostka G, Giltay R, Bloch W, Addicks K, Timpl R, Fässler R, Chu ML (2001) Perinatal lethality and endothelial cell abnormalities in several vessel compartments of fibulin-1-deficient mice. Mol Cell Biol 21:7025–7034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Roker LA, Nemri K, Yu J (2017) Wnt7b signaling from the ureteric bud epithelium regulates medullary capillary development. J Am Soc Nephrol 28:250–259

    Article  CAS  PubMed  Google Scholar 

  42. Halt K, Vainio S (2014) Coordination of kidney organogenesis by wnt signaling. Pediatr Nephrol 29:737–744

    Article  PubMed  PubMed Central  Google Scholar 

  43. Pietilä I, Ellwanger K, Railo A, Jokela T, Barrantes IDB, Shan J, Niehrs C, Vainio SJ (2011) Secreted wnt antagonist dickkopf-1 controls kidney papilla development coordinated by wnt-7b signalling. Dev Biol 353:50–60

    Article  PubMed  Google Scholar 

  44. Qin S, Taglienti M, Cai L, Zhou J, Kreidberg JA (2012) C-met and NF-κB-dependent overexpression of Wnt7a and -7b and Pax2 promotes cystogenesis in polycystic kidney disease. J Am Soc Nephrol 23:1309–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Perälä N, Jakobson M, Ola R, Fazzari P, Penachioni JY, Nymark M, Tanninen T, Immonen T, Tamagnone L, Sariola H (2011) Sema4C-plexin B2 signalling modulates ureteric branching in developing kidney. Differentiation 81:81–91

    Article  PubMed  Google Scholar 

  46. Worzfeld T, Swiercz JM, Sentürk A, Genz B, Korostylev A, Deng S, Xia J, Hoshino M, Epstein JA, Chan AM, Vollmar B, Acker-Palmer A, Kuner R, Offermanns S (2014) Genetic dissection of plexin signaling in vivo. Proc Natl Acad Sci U S A 111:2194–2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Levy T, Foss-Feig JH, Betancur C, Siper PM, Trelles-Thorne MDP, Halpern D, Frank Y, Lozano R, Layton C, Britvan B, Bernstein JA, Buxbaum JD, Berry-Kravis E, Powell CM, Srivastava S, Sahin M, Soorya L, Thurm A, Kolevzon A (2022) Strong evidence for genotype-phenotype correlations in Phelan-McDermid syndrome: results from the developmental synaptopathies consortium. Hum Mol Genet 31:625–637

    Article  CAS  PubMed  Google Scholar 

  48. Mitz AR, Philyaw TJ, Boccuto L, Shcheglovitov A, Sarasua SM, Kaufmann WE, Thurm A (2018) Identification of 22q13 genes most likely to contribute to Phelan McDermid syndrome. Eur J Hum Genet 26:293–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kurtas N, Arrigoni F, Errichiello E, Zucca C, Maghini C, D’Angelo MG, Beri S, Giorda R, Bertuzzo S, Delledonne M, Xumerle L, Rossato M, Zuffardi O, Bonaglia MC (2018) Chromothripsis and ring chromosome 22: a paradigm of genomic complexity in the Phelan-McDermid syndrome (22q13 deletion syndrome). J Med Genet 55:269–277

    Article  CAS  PubMed  Google Scholar 

  50. Guilherme RS, Soares KC, Simioni M, Vieira TP, Gil-da-Silva-Lopes VL, Kim CA, Brunoni D, Spinner NB, Conlin LK, Christofolini DM, Kulikowski LD, Steiner CE, Melaragno MI (2014) Clinical, cytogenetic, and molecular characterization of six patients with ring chromosomes 22, including one with concomitant 22q11.2 deletion. Am J Med Genet A 164A:1659–1665

    Article  PubMed  Google Scholar 

  51. Guilherme R, Klein E, Hamid A, Bhatt S, Volleth M, Polityko A, Kulpanovich A, Dufke A, Albrecht B, Morlot S, Brecevic L, Petersen M, Manolakos E, Kosyakova N, Liehr T (2013) Human ring chromosomes - new insights for their clinical significance. Balkan J Med Genet 16:13–20

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ziats CA, Grosvenor LP, Sarasua SM, Thurm AE, Swedo SE, Mahfouz A, Rennert OM, Ziats MN (2019) Functional genomics analysis of Phelan-McDermid syndrome 22q13 region during human neurodevelopment. PLoS One 14:e0213921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Koza SA, Tabet AC, Bonaglia MC, Andres S, Anderlid B, Aten E, Stiefsohn D, European Phelan-McDermid syndrome consortium, Evans DG, van Ravenswaaij-Arts CMA, Kant SG (2023) Consensus recommendations on counselling in Phelan-McDermid syndrome, with special attention to recurrence risk and to ring chromosome 22. Eur J Med Genet 66:104773

    Article  PubMed  Google Scholar 

  54. Srikanth S, Jain L, Zepeda-Mendoza C, Cascio L, Jones K, Pauly R, DuPont B, Rogers C, Sarasua S, Phelan K, Morton C, Boccuto L (2021) Position effects of 22q13 rearrangements on candidate genes in Phelan-McDermid syndrome. PLoS One 16:e0253859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Guilherme RS, Moyses-Oliveira M, Dantas AG, Meloni VA, Colovati ME, Kulikowski LD, Melaragno MI (2016) Position effect modifying gene expression in a patient with ring chromosome 14. J Appl Genet 57:183–187

    Article  CAS  PubMed  Google Scholar 

  56. Srivastava S, Sahin M, Buxbaum JD, Berry-Kravis E, Soorya LV, Thurm A, Bernstein JA, Asante-Otoo A, Bennett WEJ, Betancur C, Brickhouse TH, Passos Bueno MR, Chopra M, Christensen CK, Cully JL, Dies K, Friedman K, Gummere B, Holder JLJ, Jimenez-Gomez A, Kerins CA, Khan O, Kohlenberg T, Lacro RV, Levi LA, Levy T, Linnehan D, Eva L, Moshiree B, Neumeyer A, Paul SM, Phelan K, Persico A, Rapaport R, Rogers C, Saland J, Sethuram S, Shapiro J, Tarr PI, White KM, Wickstrom J, Williams KM, Winrow D, Wishart B, Kolevzon A (2023) Updated consensus guidelines on the management of Phelan-McDermid syndrome. Am J Med Genet A. https://doi.org/10.1002/ajmg.a.63312

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Phelan-McDermid Syndrome Foundation and the PMS International Registry for their support. We thank the families and people with Phelan-McDermid syndrome who made this study possible. We thank the Gala for 22 for supporting the Phelan-McDermid Syndrome Research Initiative at Clemson University.

Author information

Authors and Affiliations

Authors

Contributions

Megan McCoy planned and designed the study, analyzed the data, interpreted the findings, and wrote the manuscript. Sara Sarasua planned and designed the study, analyzed the data, supervised the data analysis, interpreted the findings, and revised the manuscript. Jane DeLuca planned the study, interpreted the findings, supervised the writing, and revised the manuscript. Stephanie Davis planned the study, interpreted the findings, and revised the manuscript. Curtis Rogers planned the study, interpreted the findings, and revised the manuscript. Katy Phelan planned the study, interpreted the findings, and revised the manuscript. Luigi Boccuto planned and designed the study, acquired the data, interpreted the findings, and revised the manuscript.

Corresponding author

Correspondence to Sara M. Sarasua.

Ethics declarations

Ethics approval

The Clemson University IRB reviewed “Analysis of Phelan-McDermid Syndrome Secondary Data” and determined it met the criteria for exempt review (IRB2020-404).

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCoy, M.D., Sarasua, S.M., DeLuca, J.M. et al. Genetics of kidney disorders in Phelan-McDermid syndrome: evidence from 357 registry participants. Pediatr Nephrol 39, 749–760 (2024). https://doi.org/10.1007/s00467-023-06146-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-023-06146-y

Keywords

Navigation