Skip to main content
Log in

Copy number variation analysis in 138 families with steroid-resistant nephrotic syndrome identifies causal homozygous deletions in PLCE1 and NPHS2 in two families

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Steroid-resistant nephrotic syndrome (SRNS) is the second most common cause of kidney failure in children and adults under the age of 20 years. Previously, we were able to detect by exome sequencing (ES) a known monogenic cause of SRNS in 25–30% of affected families. However, ES falls short of detecting copy number variants (CNV). Therefore, we hypothesized that causal CNVs could be detected in a large SRNS cohort.

Methods

We performed genome-wide single nucleotide polymorphism (SNP)-based CNV analysis on a cohort of 138 SRNS families, in whom we previously did not identify a genetic cause through ES. We evaluated ES and CNV data for variants in 60 known SRNS genes and in 13 genes in which variants are known to cause a phenocopy of SRNS. We applied previously published, predefined criteria for CNV evaluation.

Results

We detected a novel CNV in two genes in 2 out of 138 families (1.5%). The 9,673 bp homozygous deletion in PLCE1 and the 6,790 bp homozygous deletion in NPHS2 were confirmed across the breakpoints by PCR and Sanger sequencing.

Conclusions

We confirmed that CNV analysis can identify the genetic cause in SRNS families that remained unsolved after ES. Though the rate of detected CNVs is minor, CNV analysis can be used when there are no other genetic causes identified. Causative CNVs are less common in SRNS than in other monogenic kidney diseases, such as congenital anomalies of the kidneys and urinary tract, where the detection rate was 5.3%.

Graphical abstract

A higher resolution version of the Graphical abstract is available as Supplementary information

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Depersonalized data that this study is based on are available from the corresponding author upon request.

References

  1. Barnett HL, Edelmann CM, Greifer I (1981) Primary nephrotic syndrome in children: Clinical significance of histopathologic variants of minimal change and of diffuse mesangial hypercellularity. A report of the international study of kidney disease in children. Kidney Int 20:765–771. https://doi.org/10.1038/ki.1981.209

    Article  Google Scholar 

  2. Leonard MB, Donaldson LA, Ho M, Geary DF (2003) A prospective cohort study of incident maintenance dialysis in children: an NAPRTC study. Kidney Int 63:744–755. https://doi.org/10.1046/j.1523-1755.2003.00788.x

    Article  PubMed  Google Scholar 

  3. Connaughton DM, Kennedy C, Shril S et al (2019) Monogenic causes of chronic kidney disease in adults. Kidney Int 95:914–928. https://doi.org/10.1016/j.kint.2018.10.031

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wiggins RC (2007) The spectrum of podocytopathies: A unifying view of glomerular diseases. Kidney Int 71:1205–1214

    Article  CAS  PubMed  Google Scholar 

  5. Warejko JK, Tan W, Daga A et al (2018) Whole exome sequencing of patients with steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 13:53–62. https://doi.org/10.2215/CJN.04120417

    Article  CAS  PubMed  Google Scholar 

  6. Sadowski CE, Lovric S, Ashraf S et al (2015) A Single-Gene Cause in 29.5% of Cases of Steroid-Resistant Nephrotic Syndrome. J Am Soc Nephrol 26:1279–1289. https://doi.org/10.1681/ASN.2014050489

    Article  CAS  PubMed  Google Scholar 

  7. Mann N, Braun DA, Amann K et al (2019) Whole-Exome sequencing enables a precision medicine approach for kidney transplant recipients. J Am Soc Nephrol 30:201–215. https://doi.org/10.1681/ASN.2018060575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhao L, Liu H, Yuan X et al (2020) Comparative study of whole exome sequencing-based copy number variation detection tools. BMC Bioinformatics 21:97. https://doi.org/10.1186/s12859-020-3421-1

    Article  PubMed  PubMed Central  Google Scholar 

  9. Krumm N, Sudmant PH, Ko A et al (2012) Copy number variation detection and genotyping from exome sequence data. Genome Res 22:1525–1532. https://doi.org/10.1101/gr.138115.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Klambauer G, Schwarzbauer K, Mayr A et al (2012) Cn.MOPS: Mixture of Poissons for discovering copy number variations in next-generation sequencing data with a low false discovery rate. Nucleic Acids Res 40:e69. https://doi.org/10.1093/nar/gks003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Talevich E, Shain AH, Botton T, Bastian BC (2016) CNVkit: Genome-Wide Copy Number Detection and Visualization from Targeted DNA Sequencing. PLoS Comput Biol 12:e1004873. https://doi.org/10.1371/journal.pcbi.1004873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sathirapongsasuti JF, Lee H, Horst BAJ et al (2011) Exome sequencing-based copy-number variation and loss of heterozygosity detection: ExomeCNV. Bioinformatics 27:2648–2654. https://doi.org/10.1093/bioinformatics/btr462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tan R, Wang Y, Kleinstein SE et al (2014) An Evaluation of Copy Number Variation Detection Tools from Whole-Exome Sequencing Data. Hum Mutat 35:899–907. https://doi.org/10.1002/humu.22537

    Article  CAS  PubMed  Google Scholar 

  14. Wu C-HW, Lim TY, Wang C et al (2022) Copy Number Variation Analysis Facilitates Identification of Genetic Causation in Patients with Congenital Anomalies of the Kidney and Urinary Tract. Eur Urol Open Sci 44:106–112. https://doi.org/10.1016/J.EUROS.2022.08.004

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sanna-Cherchi S, Kiryluk K, Burgess KE et al (2012) Copy-number disorders are a common cause of congenital kidney malformations. Am J Hum Genet 91:987–997. https://doi.org/10.1016/j.ajhg.2012.10.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Verbitsky M, Westland R, Perez A et al (2019) The copy number variation landscape of congenital anomalies of the kidney and urinary tract. Nat Genet 51:117–127. https://doi.org/10.1038/s41588-018-0281-y

    Article  CAS  PubMed  Google Scholar 

  17. Westland R, Verbitsky M, Vukojevic K et al (2015) Copy number variation analysis identifies novel CAKUT candidate genes in children with a solitary functioning kidney. Kidney Int 88:1402–1410. https://doi.org/10.1038/ki.2015.239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Snoek R, van Setten J, Keating BJ et al (2018) NPHP1 (Nephrocystin-1) gene deletions cause adult-onset ESRD. J Am Soc Nephrol 29:1772–1779. https://doi.org/10.1681/ASN.2017111200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nakanishi K, Okamoto T, Nozu K et al (2019) Pair analysis and custom array CGH can detect a small copy number variation in COQ6 gene. Clin Exp Nephrol 23:669–675. https://doi.org/10.1007/s10157-018-1682-z

    Article  CAS  PubMed  Google Scholar 

  20. Nagano C, Nozu K, Morisada N et al (2018) Detection of copy number variations by pair analysis using next-generation sequencing data in inherited kidney diseases. Clin Exp Nephrol 22:881–888. https://doi.org/10.1007/s10157-018-1534-x

    Article  CAS  PubMed  Google Scholar 

  21. Gee HY, Otto EA, Hurd TW et al (2014) Whole-exome resequencing distinguishes cystic kidney diseases from phenocopies in renal ciliopathies. Kidney Int 85:880–887. https://doi.org/10.1038/ki.2013.450

    Article  CAS  PubMed  Google Scholar 

  22. Hermle T, Schneider R, Schapiro D et al (2018) GAPVD1 and ANKFY1 mutations implicate RAB5 regulation in nephrotic syndrome. J Am Soc Nephrol 29:2123–2138. https://doi.org/10.1681/ASN.2017121312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hinkes B, Wiggins RC, Gbadegesin R et al (2006) Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible. Nat Genet 38:1397–1405. https://doi.org/10.1038/ng1918

    Article  CAS  PubMed  Google Scholar 

  24. Boute N, Gribouval O, Roselli S et al (2000) NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat Genet 24:349–354. https://doi.org/10.1038/74166

    Article  CAS  PubMed  Google Scholar 

  25. Swaminathan GJ, Bragin E, Chatzimichali EA et al (2012) DECIPHER: web-based, community resource for clinical interpretation of rare variants in developmental disorders. Hum Mol Genet 21:R37–R44. https://doi.org/10.1093/hmg/dds362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Firth HV, Richards SM, Bevan AP et al (2009) DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources. Am J Hum Genet 84:524–533. https://doi.org/10.1016/j.ajhg.2009.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Miller DT, Adam MP, Aradhya S et al (2010) Consensus Statement: Chromosomal Microarray Is a First-Tier Clinical Diagnostic Test for Individuals with Developmental Disabilities or Congenital Anomalies. Am J Hum Genet 86:749–764. https://doi.org/10.1016/j.ajhg.2010.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Heeringa SF, Chernin G, Chaki M et al (2011) COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J Clin Invest 121:2013–2024. https://doi.org/10.1172/JCI45693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tan W, Lovric S, Ashraf S et al (2018) Analysis of 24 genes reveals a monogenic cause in 11.1% of cases with steroid-resistant nephrotic syndrome at a single center. Pediatr Nephrol 33:305–314. https://doi.org/10.1007/s00467-017-3801-6

    Article  CAS  PubMed  Google Scholar 

  30. Av D, Ghosh R, Yuan B et al (2019) Copy number variant and runs of homozygosity detection by microarrays enabled more precise molecular diagnoses in 11,020 clinical exome cases. Genome Med 11:30. https://doi.org/10.1186/s13073-019-0639-5

    Article  CAS  Google Scholar 

  31. Boone PM, Campbell IM, Baggett BC et al (2013) Deletions of recessive disease genes: CNV contribution to carrier states and disease-causing alleles. Genome Res 23:1383–1394. https://doi.org/10.1101/gr.156075.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lalani SR, Liu P, Rosenfeld JA et al (2016) Recurrent Muscle Weakness with Rhabdomyolysis, Metabolic Crises, and Cardiac Arrhythmia Due to Bi-allelic TANGO2 Mutations. Am J Hum Genet 98:347–357. https://doi.org/10.1016/j.ajhg.2015.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Web resources

  1. ClinVar. National Center for Biotechnology Information, U.S. National Library of Medicine. Accessed July 1, 2023. http://www.ncbi.nlm.nih.gov/clinvar

  2. DECIPHER. Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources. Accessed July 1, 2023. https://decipher.sanger.ac.uk/

  3. ISCA. International Standards for Cytogenomic Arrays. Accessed July 1, 2023. https://www.clinicalgenome.org/

Download references

Acknowledgements

We thank all participating families and physicians for their contribution. F.H. is the William E. Harmon Professor of Pediatrics at Harvard Medical School.

Funding

This research was supported by grants from the Department of Defense to S.S-C. (PR190746 and PR212415), and by grants from the National Institutes of Health to F.H. and S.S-C. (5RC-2DK122397-02), to F.H. (5R01-DK076683-16), and to N.D.M (T5T32-DK007726-37).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: D.P., F.H., S.S.; Data Curation: D.P., S.S., T.Y.L.; Analysis and interpretation of data: D.P., N.D.M, R.S., S.H., S.S., T.Y.L.; Funding Acquisition: F.H., S.S-C.; Methodology: S.S-C., S.S., T.Y.L.; Project Administration: F.H.; Acquisition of Data: J.A.K., M.A.S., S.E.D.; Software: S.S., T.Y.L.; Supervision: F.H.; Validation: D.P., S.S.; Visualization: D.P.; Writing-original draft: D.P., F.H.; Writing-review and editing: F.H., N.D.M., S.S-C., S.S., T.Y.L.

Corresponding author

Correspondence to Friedhelm Hildebrandt.

Ethics declarations

Ethics approval and consent

This study was approved by the institutional review board of Boston Children’s Hospital as well as institutional review boards of institutions where families were recruited. Before inclusion, written informed consent of each individual or their legal guardians was obtained.

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Graphical abstract (PPTX 1180 KB)

Supplementary file2 (PDF 527 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pantel, D., Mertens, N.D., Schneider, R. et al. Copy number variation analysis in 138 families with steroid-resistant nephrotic syndrome identifies causal homozygous deletions in PLCE1 and NPHS2 in two families. Pediatr Nephrol 39, 455–461 (2024). https://doi.org/10.1007/s00467-023-06134-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-023-06134-2

Keywords

Navigation