Skip to main content
Log in

The manifestations of metabolic acidosis during acetazolamide treatment in a cohort of pediatric idiopathic intracranial hypertension

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript
  • 3 Altmetric

Abstract   

Background

Idiopathic intracranial hypertension is characterized by increased intracranial pressure with unidentified pathology. Despite its use as the first-line treatment, data on acetazolamide’s effectiveness and safety in pediatric idiopathic intracranial hypertension is sparse. This study's objective was to assess those issues and the need for routine blood gas monitoring during treatment.

Methods

Retrospective observational cohort study, based on multicenter computerized medical charts of pediatric patients with idiopathic intracranial hypertension diagnosed between 2007–2018 in three medical centers serving one metropolitan area (an estimated population of 400,000 children). Clinical and laboratory data of children up to 18 years old, fulfilling the Friedman criteria and taking acetazolamide, were collected and analyzed.

Results

Sixty-eight patients were included with a mean acetazolamide treatment duration of 8.5 months and a median maximal dose 18 mg/kg/d. Sixty-two children had mild (76%), moderate (13%), or severe (1.5%) metabolic acidosis. At least one adverse effect (neurologic, gastrointestinal, renal) was recorded among 27% of patients. No significant difference was found between the mean pH of children with or without clinical adverse effects (p = 0.35). No correlation was found between laboratory acidosis and adverse effect severity (p = 0.3), or between median acetazolamide dose and acidosis level (p = 0.57).

Conclusions

Although laboratory finding of metabolic acidosis is common among patients with idiopathic intracranial hypertension treated with acetazolamide, it is not correlated with clinics. Therefore, we recommend sending blood tests during acetazolamide treatment based on clinical judgment.

Graphical abstract

A higher resolution version of the Graphical abstract is available as Supplementary information

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

For additional information and access to the data, please reach out to the study’s corresponding author.

Abbreviations

IIH:

Idiopathic intracranial hypertension pressure

MA:

Metabolic acidosis

ICP:

Intracranial pressure

CT:

Computerized tomography

MRI:

Magnetic resonance imaging

LP:

Lumbar puncture

CSF:

Cerebrospinal fluid

CA:

Carbonic anhydrase

BMI:

Body mass index

References

  1. Wall M, Kupersmith MJ, Kieburtz KD et al (2014) The idiopathic intracranial hypertension treatment trial: clinical profile at baseline. JAMA Neurol 71:693–701. https://doi.org/10.1001/jamaneurol.2014.133

    Article  PubMed  PubMed Central  Google Scholar 

  2. Corbett JJ, Savino PJ, Thompson HS et al (1982) Visual loss in pseudotumor cerebri. Follow-up of 57 patients from five to 41 years and a profile of 14 patients with permanent severe visual loss. Arch Neurol 39:461–474. https://doi.org/10.1001/archneur.1982.00510200003001

    Article  CAS  PubMed  Google Scholar 

  3. Thambisetty M, Lavin PJ, Newman NJ et al (2007) Fulminant idiopathic intracranial hypertension. Neurology 68:229–232. https://doi.org/10.1212/01.wnl.0000251312.19452.ec

    Article  PubMed  Google Scholar 

  4. Hilely A, Hecht I, Goldenberg-Cohen N et al (2019) Long-Term Follow-up of Pseudotumor Cerebri Syndrome in Prepubertal Children, Adolescents, and Adults. Pediatr Neurol 101:57–63. https://doi.org/10.1016/j.pediatrneurol.2019.04.018

    Article  PubMed  Google Scholar 

  5. Hoffmann J, Huppertz HJ, Schmidt C et al (2013) Morphometric and volumetric MRI changes in idiopathic intracranial hypertension. Cephalalgia 33:1075–1084. https://doi.org/10.1177/0333102413484095

    Article  PubMed  Google Scholar 

  6. Maralani PJ, Hassanlou M, Torres C et al (2012) Accuracy of brain imaging in the diagnosis of idiopathic intracranial hypertension. Clin Radiol 67:656–663. https://doi.org/10.1016/j.crad.2011.12.002

    Article  CAS  PubMed  Google Scholar 

  7. Butros SR, Goncalves LF, Thompson D et al (2012) Imaging features of idiopathic intracranial hypertension, including a new finding: widening of the foramen ovale. Acta Radiol 53:682–688. https://doi.org/10.1258/ar.2012.110705

    Article  PubMed  Google Scholar 

  8. Friedman DI, Liu GT, Digre KB (2013) Revised diagnostic criteria for the pseudotumor cerebri syndrome in adults and children. Neurology 81:1159–1165. https://doi.org/10.1212/WNL.0b013e3182a55f17

    Article  PubMed  Google Scholar 

  9. Mercille G, Ospina LH (2007) Pediatric Idiopathic Intracranial Hypertension: A Review. Pediatr Rev 28:e77–e86. https://doi.org/10.1542/pir.28-11-e77

    Article  PubMed  Google Scholar 

  10. Markey KA, Mollan SP, Jensen RH et al (2016) Understanding idiopathic intracranial hypertension: Mechanisms, management, and future directions. Lancet Neurol 15:78–91. https://doi.org/10.1016/S1474-4422(15)00298-7

    Article  PubMed  Google Scholar 

  11. Standridge SM (2010) Idiopathic intracranial hypertension in children: A review and algorithm. Pediatr Neurol 43:377–390. https://doi.org/10.1016/j.pediatrneurol.2010.08.001

    Article  PubMed  Google Scholar 

  12. Ball AK, Clarke CE (2006) Idiopathic intracranial hypertension. Lancet Neurol 5:433–442. https://doi.org/10.1016/S1474-4422(06)70442-2

    Article  PubMed  Google Scholar 

  13. Wall M (1990) Sensory visual testing in idiopathic intracranial hypertension: measures sensitive to change. Neurology 40:1859–1864. https://doi.org/10.1212/WNL.40.12.1859

    Article  CAS  PubMed  Google Scholar 

  14. Mollan SP, Davies B, Silver NC et al (2018) Idiopathic intracranial hypertension: Consensus guidelines on management. J Neurol Neurosurg Psychiatry 89:1088–1100. https://doi.org/10.1136/jnnp-2017-317440

    Article  PubMed  Google Scholar 

  15. Thuente DD, Buckley EG (2005) Pediatric optic nerve sheath decompression. Ophthalmology 112:724–727. https://doi.org/10.1016/j.ophtha.2004.11.049

    Article  PubMed  Google Scholar 

  16. Aylward SC, Reem RE (2017) Pediatric Intracranial Hypertension. Pediatr Neurol 66:32–43. https://doi.org/10.1016/j.pediatrneurol.2016.08.010

    Article  PubMed  Google Scholar 

  17. Çelebisoy N, Gökçay F, Şirin H et al (2007) Treatment of idiopathic intracranial hypertension: Topiramate vs Acetazolamide, an open-label study. Acta Neurol Scand 116:322–327. https://doi.org/10.1111/j.1600-0404.2007.00905.x

    Article  CAS  PubMed  Google Scholar 

  18. McCarthy KD, Reed DJ (1974) The effect of Acetazolamide and furosemide on cerebrospinal fluid production and choroid plexus carbonic anhydrase activity. J Pharmacol Exp Ther 189:194–201

    CAS  PubMed  Google Scholar 

  19. Smith SV, Friedman DI (2017) The Idiopathic Intracranial Hypertension Treatment Trial: A Review of the Outcomes. Headache 57:1303–1310. https://doi.org/10.1111/head.13144

    Article  PubMed  Google Scholar 

  20. Wall M, Kupersmith MJ, Thurtell MJ et al (2017) The Longitudinal Idiopathic Intracranial Hypertension Trial: Outcomes from Months 6–12. Am J Ophthalmol 176:102–107. https://doi.org/10.1016/j.ajo.2017.01.004

    Article  PubMed  PubMed Central  Google Scholar 

  21. Van Berkel MA, Elefritz JL (2018) Evaluating off-label uses of acetazolamide. Am J Health Syst Pharm 75:524–531. https://doi.org/10.2146/ajhp170279

    Article  CAS  PubMed  Google Scholar 

  22. Wall M, McDermott MP, Kieburtz KD et al (2014) Effect of Acetazolamide on visual function in patients with idiopathic intracranial hypertension and mild visual loss: the idiopathic intracranial hypertension treatment trial. JAMA 311:1641–1651. https://doi.org/10.1001/jama.2014.3312

    Article  CAS  PubMed  Google Scholar 

  23. Van Patot MC, Leadbetter G, Keyes LE et al (2008) Prophylactic low-dose Acetazolamide reduces the incidence and severity of acute mountain sickness. High Alt Med Biol 9:289–293. https://doi.org/10.1089/ham.2008.1029

    Article  PubMed  Google Scholar 

  24. Karimy JK, Duran D, Hu JK et al (2016) Cerebrospinal fluid hypersecretion in pediatric hydrocephalus. Neurosurg Focus 41:E10. https://doi.org/10.3171/2016.8.FOCUS16278

    Article  PubMed  Google Scholar 

  25. Karimy JK, Zhang J, Kurland DB et al (2017) Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus. Nat Med 23:997–1003. https://doi.org/10.1038/nm.4361

    Article  CAS  PubMed  Google Scholar 

  26. Supuran CT (2018) Applications of carbonic anhydrases inhibitors in renal and central nervous system diseases. Expert Opin Ther Pat 28:713–721. https://doi.org/10.1080/13543776.2018.1519023

    Article  CAS  PubMed  Google Scholar 

  27. Supuran CT (2015) Acetazolamide for the treatment of idiopathic intracranial hypertension. Expert Rev Neurother 15:851–856. https://doi.org/10.1586/14737175.2015.1066675

    Article  CAS  PubMed  Google Scholar 

  28. Martínez-Monseny AF, Bolasell M, Callejón-Póo L et al (2019) AZATAX: Acetazolamide safety and efficacy in cerebellar syndrome in PMM2 congenital disorder of glycosylation (PMM2-CDG). Ann Neurol 85:740–751. https://doi.org/10.1002/ana.25457

    Article  CAS  PubMed  Google Scholar 

  29. Tovia E, Reif S, Oren A, Mitelpunkt A et al (2017) Treatment Response in Pediatric Patients with Pseudotumor Cerebri Syndrome. J Neuroophthalmol 37:393–397. https://doi.org/10.1097/wno.0000000000000516

    Article  PubMed  Google Scholar 

  30. Sharan S, Dupuis A, Hébert D et al (2010) The effect of oral Acetazolamide on weight gain in children. Can J Ophthalmol 45:41–45. https://doi.org/10.3129/i09-198

    Article  PubMed  Google Scholar 

  31. Markhorst JM, Stunnenberg BC, Ginjaar IB et al (2014) Clinical experience with long-term acetazolamide treatment in children with nondystrophic myotonias: a three-case report. Pediatr Neurol 51:537–541. https://doi.org/10.1016/j.pediatrneurol.2014.05.027

    Article  PubMed  Google Scholar 

  32. ten Hove MW, Friedman DI, Patel AD et al (2016) Safety and Tolerability of Acetazolamide in the Idiopathic Intracranial Hypertension Treatment Trial. J Neuroophthalmol 36:13–19. https://doi.org/10.1097/WNO.0000000000000322

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The graphical abstract for this work was created using the 'Noun project' application.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oded Volovesky.

Ethics declarations

Competing interests

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yarden Bulkowstein and Adi Nitzan-Luques contributed equally to this work.

Supplementary information

Below is the link to the electronic supplementary material.

Graphical Abstract (PPTX 296 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulkowstein, Y., Nitzan‑Luques, A., Schnapp, A. et al. The manifestations of metabolic acidosis during acetazolamide treatment in a cohort of pediatric idiopathic intracranial hypertension. Pediatr Nephrol 39, 185–191 (2024). https://doi.org/10.1007/s00467-023-06084-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-023-06084-9

Keywords

Navigation